异构化
量子化学
激发态
烯醇
亚胺
化学
胺气处理
光化学
酮-烯醇互变异构
量子化学
量子
计算化学
有机化学
反应机理
互变异构体
分子
原子物理学
物理
量子力学
催化作用
作者
S. Santra,Rintu Mondal,Atanu Panja,Nikhil Guchhait
摘要
In this article, the photophysical properties of ethyl-3-(benzo[D]thiazol-2-yl)-5-chloro-2-hydroxybenzoate (EBTCH) and ethyl-3-(benzo[D]oxazol-2-yl)-5-chloro-2-hydroxybenzoate (EBOCH) have been explored spectroscopically along with quantum chemical calculations. From a structural viewpoint, both molecules have two proton acceptor sites (thiazole/oxazole N atom and ester O atom) and a common proton donor site (phenolic -OH) connected by a six-membered H-bonding ring capable of both imine-amine and enol-keto photoisomerisation. Steady state absorption and emission spectra and time-resolved fluorescence characteristics of EBTCH and EBOCH and a comparison with the spectral data of controlled compounds 2-(benzo[D]thiazol-2-yl)-4-chlorophenol (BTCP), 2-(benzo[D]oxazol-2-yl)-4-chlorophenol (BOCP) and ethyl 5-chloro-2-hydroxybenzoate (ECHB) support the preference for imine-amine isomerisation over enol-keto isomerization in the excited state. The computed structural parameters for the ground and excited states for both the molecules from the density functional theory (DFT) calculations are found to be in favour of the imine-amine isomerization process. Theoretical potential energy curves along the proton transfer coordinates of EBTCH and EBOCH support the existence of both isomers in the ground state (S
科研通智能强力驱动
Strongly Powered by AbleSci AI