Leakage prediction approach and influencing factor analysis from seal test

印章(徽章) 泄漏(经济) 考试(生物学) 工程类 法律工程学 石油工程 海洋工程 岩土工程 可靠性工程 计算机科学 地质学 地理 古生物学 考古 经济 宏观经济学
作者
Ran Gong,Jinxiao Li,Jin Xu,He Zhang,Huajun Che
出处
期刊:Industrial Lubrication and Tribology [Emerald (MCB UP)]
标识
DOI:10.1108/ilt-07-2024-0271
摘要

Purpose Leakage serves as a core indicator of sealing performance degradation, particularly under high-speed and heavy-duty operational where increased leakage is common. Within heavy-duty vehicle transmissions, the leakage can lead to excessive pressure loss and eventual transmission failure. This study aims to introduce a predictive method for assessing sealing ring leakage in vehicle transmissions based on operating conditions. Design/methodology/approach Seal test was carried out using a specialized seal test rig. Various data points were collected during this test, including leakage, friction torque, oil temperature, oil pressure and rotating speed. The collected data underwent noise separation and reconstruction using the complete ensemble empirical mode decomposition with adaptive noise method. Subsequently, a leakage prediction model is developed using the random forest regression with parameter optimization. A quantitative evaluation for influencing factors in leakage prediction process is investigated. Findings The results achieve a mean accuracy index exceeding 95%, demonstrating close alignment between predicted and actual leakage values. Feature contribution results highlight that the trends of the oil temperature, friction torque and oil pressure significantly affect the leakage prediction, with the oil temperature trend exerting the most substantial influence. Originality/value This work sheds light on the interplay between operating conditions and sealing performance degradation, offering valuable insights for understanding and addressing sealing issues effectively. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2024-0271/
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shit完成签到 ,获得积分10
1秒前
封尘逸动发布了新的文献求助10
1秒前
2秒前
guo发布了新的文献求助10
2秒前
jiaojiao完成签到,获得积分10
2秒前
科研通AI2S应助施奇赞采纳,获得10
3秒前
xia发布了新的文献求助50
3秒前
4秒前
小松鼠完成签到,获得积分10
4秒前
Kikisong发布了新的文献求助30
4秒前
5秒前
6秒前
丘比特应助金皮卡采纳,获得10
9秒前
10秒前
10秒前
科研通AI2S应助激昂的白凡采纳,获得10
12秒前
12秒前
13秒前
14秒前
16秒前
jovrtic发布了新的文献求助10
16秒前
18秒前
毛头侠发布了新的文献求助10
18秒前
陶一淘完成签到 ,获得积分20
19秒前
Cloud发布了新的文献求助100
19秒前
小铃铛发布了新的文献求助20
19秒前
21秒前
21秒前
22秒前
22秒前
无花果应助端庄书雁采纳,获得10
23秒前
24秒前
li7er发布了新的文献求助10
24秒前
25秒前
JxJ发布了新的文献求助10
25秒前
等待的雪碧完成签到,获得积分10
25秒前
儒雅慕灵发布了新的文献求助10
26秒前
27秒前
30秒前
30秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146046
求助须知:如何正确求助?哪些是违规求助? 2797450
关于积分的说明 7824222
捐赠科研通 2453810
什么是DOI,文献DOI怎么找? 1305876
科研通“疑难数据库(出版商)”最低求助积分说明 627593
版权声明 601491