Leakage prediction approach and influencing factor analysis from seal test

印章(徽章) 泄漏(经济) 考试(生物学) 工程类 法律工程学 石油工程 海洋工程 岩土工程 可靠性工程 计算机科学 地质学 地理 宏观经济学 古生物学 经济 考古
作者
Ran Gong,Jinxiao Li,Jin Xu,He Zhang,Huajun Che
出处
期刊:Industrial Lubrication and Tribology [Emerald (MCB UP)]
标识
DOI:10.1108/ilt-07-2024-0271
摘要

Purpose Leakage serves as a core indicator of sealing performance degradation, particularly under high-speed and heavy-duty operational where increased leakage is common. Within heavy-duty vehicle transmissions, the leakage can lead to excessive pressure loss and eventual transmission failure. This study aims to introduce a predictive method for assessing sealing ring leakage in vehicle transmissions based on operating conditions. Design/methodology/approach Seal test was carried out using a specialized seal test rig. Various data points were collected during this test, including leakage, friction torque, oil temperature, oil pressure and rotating speed. The collected data underwent noise separation and reconstruction using the complete ensemble empirical mode decomposition with adaptive noise method. Subsequently, a leakage prediction model is developed using the random forest regression with parameter optimization. A quantitative evaluation for influencing factors in leakage prediction process is investigated. Findings The results achieve a mean accuracy index exceeding 95%, demonstrating close alignment between predicted and actual leakage values. Feature contribution results highlight that the trends of the oil temperature, friction torque and oil pressure significantly affect the leakage prediction, with the oil temperature trend exerting the most substantial influence. Originality/value This work sheds light on the interplay between operating conditions and sealing performance degradation, offering valuable insights for understanding and addressing sealing issues effectively. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2024-0271/
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助贪玩的台灯采纳,获得10
1秒前
1秒前
研友_8Raw2Z发布了新的文献求助10
2秒前
Akim应助Shu舒采纳,获得10
2秒前
酷波er应助蓝风铃采纳,获得10
2秒前
dgqz发布了新的文献求助10
2秒前
123完成签到,获得积分10
3秒前
3秒前
chenkaixin完成签到,获得积分10
3秒前
guo发布了新的文献求助10
3秒前
3秒前
Mikeychen完成签到,获得积分10
4秒前
4秒前
Dryad完成签到,获得积分10
4秒前
5秒前
5秒前
畅快的听枫完成签到,获得积分10
5秒前
5秒前
勤奋滑板完成签到,获得积分10
5秒前
希哩哩完成签到 ,获得积分10
5秒前
好运莲莲发布了新的文献求助10
5秒前
6秒前
隐形曼青应助max采纳,获得10
6秒前
6秒前
Ryan完成签到,获得积分10
7秒前
不想看文献完成签到 ,获得积分10
7秒前
橙子快跑完成签到,获得积分10
7秒前
科目三应助123采纳,获得10
8秒前
8秒前
NO发布了新的文献求助10
8秒前
Hello应助宝安采纳,获得10
9秒前
干净的早晨完成签到,获得积分10
9秒前
啊张完成签到,获得积分10
9秒前
开心的吗喽完成签到 ,获得积分10
9秒前
乐乐应助NIHAO采纳,获得10
9秒前
Steven发布了新的文献求助10
10秒前
10秒前
tian悦发布了新的文献求助10
10秒前
大模型应助123采纳,获得10
10秒前
cultromics完成签到,获得积分10
10秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388652
求助须知:如何正确求助?哪些是违规求助? 4510971
关于积分的说明 14037083
捐赠科研通 4421705
什么是DOI,文献DOI怎么找? 2428895
邀请新用户注册赠送积分活动 1421453
关于科研通互助平台的介绍 1400650