肺
重症监护医学
纳米技术
计算机科学
医学
材料科学
内科学
作者
Zhengxing Li,Zhongyuan Guo,Fangyu Zhang,Lei Sun,Hao Luan,Zheng Fang,Jeramy L. Dedrick,Yichen Zhang,Christine Tang,Andrew X. Zhu,Yiyan Yu,Shichao Ding,Dan Wang,An‐Yi Chang,Lu Yin,Lynn M. Russell,Weiwei Gao,Ronnie H. Fang,Liangfang Zhang,Joseph Wang
标识
DOI:10.1038/s41467-025-56032-4
摘要
Abstract Amidst the rising prevalence of respiratory diseases, the importance of effective lung treatment modalities is more critical than ever. However, current drug delivery systems face significant limitations that impede their efficacy and therapeutic outcome. Biohybrid microrobots have shown considerable promise for active in vivo drug delivery, especially for pulmonary applications via intratracheal routes. However, the invasive nature of intratracheal administration poses barriers to its clinical translation. Herein, we report on an efficient non-invasive inhalation-based method of delivering microrobots to the lungs. A nebulizer is employed to encapsulate picoeukaryote algae microrobots within small aerosol particles, enabling them to reach the lower respiratory tract. Post nebulization, the microrobots retain their motility (~55 μm s -1 ) to help achieve a homogeneous lung distribution and long-term retention exceeding five days in the lungs. Therapeutic efficacy is demonstrated in a mouse model of acute methicillin-resistant Staphylococcus aureus pneumonia using this pulmonary inhalation approach to deliver microrobots functionalized with platelet membrane-coated polymeric nanoparticles loaded with vancomycin. These promising findings underscore the benefits of inhalable biohybrid microrobots in a setting that does not require anesthesia, highlighting the substantial translational potential of this delivery system for routine clinical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI