亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Modeling Metro Passenger Routing Choices with a Fully Differentiable End-to-End Simulation-Based Optimization (SBO) Approach

端到端原则 计算机科学 布线(电子设计自动化) 运输工程 可微函数 数学优化 工程类 运筹学 计算机网络 数学 数学分析
作者
Kejun Du,Enoch Lee,Q.M. Ma,Zhi-bin Su,Shuyang Zhang,Hong K. Lo
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/trsc.2024.0557
摘要

Metro systems in densely populated urban areas are often complicated, with some origin-destinations (OD) having multiple routes with similar travel times, leading to complex passenger routing behaviors. To improve modeling and calibration, this paper proposes a novel passenger route choice model with a metro simulator that accounts for passenger flows, queueing, congestion, and transfer delays. A novel, data-driven approach that utilizes a fully differentiable end-to-end simulation-based optimization (SBO) framework is proposed to calibrate the model, with the gradients calculated automatically and analytically using the iterative backpropagation (IB) algorithm. The SBO framework integrates data from multiple sources, including smart card data and train loadings, to calibrate the route choice parameters that best match the observed data. The full differentiability of the proposed framework enables it to calibrate for more than 20,000 passenger route choice ratios, covering every OD pair. To further improve the efficiency of the framework, a matrix-based optimization (MBO) mechanism is proposed, which provides better initial values for the SBO and ensures high efficiency with large datasets. A hybrid optimization algorithm combining MBO and SBO effectively calibrates the model, demonstrating high accuracy with synthetic data from actual passenger OD demands, where hypothesis tests are conducted for accuracies and significances. The accuracies and robustness are validated by experiments with synthetic passenger flow data, offering potential for optimizing passenger flow management in densely populated urban metro systems. Then, the SBO framework is extended for user equilibrium formulations with a crowding-aware route choice model and iterative metro simulations, calibrated by the hybrid optimization algorithm with additional matrix operations. Case studies with actual observed passenger flows are conducted to illustrate the proposed framework with multiple setups, exhibiting the heterogeneity of passenger route choice preferences and providing insights for operation management in the Hong Kong Mass Transit Railway system. History: This paper has been accepted for the Transportation Science Special Issue on Machine Learning Methods for Urban Mobility. Funding: This work was supported by the General Research Fund of the Research Grants Council of Hong Kong [Grant 16219224], the Key Research and Development Program of Hubei Province [Grant 2023BAB076], and the National Natural Science Foundation of China [Grant 72001162]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2024.0557 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
骆十八完成签到,获得积分10
1秒前
1秒前
iwjlkdjalkjc发布了新的文献求助10
1秒前
烟花应助azang采纳,获得10
2秒前
nanfang完成签到 ,获得积分10
5秒前
Otter完成签到,获得积分10
6秒前
7秒前
12秒前
5易6完成签到 ,获得积分10
16秒前
19秒前
Qvby3完成签到 ,获得积分10
21秒前
万万陈陈发布了新的文献求助10
22秒前
小憩关注了科研通微信公众号
25秒前
azang完成签到,获得积分10
26秒前
28秒前
29秒前
冬瓜完成签到,获得积分10
29秒前
31秒前
山语发布了新的文献求助10
31秒前
31秒前
关我屁事完成签到 ,获得积分10
31秒前
summitekey完成签到 ,获得积分10
34秒前
Xx发布了新的文献求助10
35秒前
35秒前
玩家发布了新的文献求助10
36秒前
完美世界应助优雅狗采纳,获得10
39秒前
赘婿应助Xx采纳,获得10
42秒前
万万陈陈完成签到,获得积分10
45秒前
冰叶点点完成签到 ,获得积分20
45秒前
菠萝咕咾肉完成签到,获得积分10
47秒前
1分钟前
Noah完成签到 ,获得积分10
1分钟前
情怀应助高高呀采纳,获得10
1分钟前
Hsevencc完成签到 ,获得积分10
1分钟前
禾叶完成签到 ,获得积分10
1分钟前
1分钟前
FRANKFANG发布了新的文献求助10
1分钟前
高高呀完成签到,获得积分10
1分钟前
高高呀发布了新的文献求助10
1分钟前
pojian完成签到,获得积分10
1分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3413289
求助须知:如何正确求助?哪些是违规求助? 3015618
关于积分的说明 8871450
捐赠科研通 2703356
什么是DOI,文献DOI怎么找? 1482211
科研通“疑难数据库(出版商)”最低求助积分说明 685159
邀请新用户注册赠送积分活动 679927