The low-frequency and broad bandgap characteristics of two-dimensional phononic crystals embedded with acoustic black hole structures

声学 振动 衰减 材料科学 低频 传输损耗 通带 截止频率 带隙 色散(光学) 声衰减 物理 频带 光学 凝聚态物理 带宽(计算) 带通滤波器 电信 天文 计算机科学
作者
Xi-Xuan Liu,W. Yan,Yaodong Xu,Zi‐Jiang Liu
出处
期刊:Physica Scripta [IOP Publishing]
卷期号:100 (3): 035934-035934
标识
DOI:10.1088/1402-4896/adb107
摘要

Abstract To address the challenge of controlling low-frequency vibration noise, a coupling phononic crystal model embedded with the acoustic black hole (ABH) structures has been designed. By comprehensively studying the complex dispersion curves, vibration modes, and transmission loss, we numerically demonstrate that this coupling structure exhibits good sound insulation performance in the low-frequency range of 64.3 Hz∼665.4 Hz, the bandgap coverage reaches 92.7%, while the effective sound insulation range achieves 89.6% within the frequency range of 1000 Hz. The torsional vibration of the scatterer component is more conducive to the lowering of the first starting frequency, and a larger torsion angle further contributes to this reduction. However, the cutoff frequency of the first bandgap is predominantly caused by the oscillating along the z-direction of the ABH structure. Evanescent waves exist in all the studied frequency bands exhibiting a strong correlation with the complex dispersion curve and the transmission loss. The intensity of the evanescent wave depends on the activated state of the ABH structures, the lower imaginary part of the complex dispersion curve corresponding to the passband yields the lower energy loss caused by the evanescent wave. Damping materials benefit the energy loss caused by evanescent waves. Parameters dependence of the ABH truncation thickness, the length of bending component and uniform part are analyzed, which are expected to provide theoretical design guidance for the control and attenuation of low-frequency vibration and noise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助聪慧的微笑采纳,获得10
刚刚
刚刚
1秒前
Lucky燕完成签到,获得积分10
1秒前
1秒前
慕青应助simpleblue采纳,获得10
2秒前
2秒前
2秒前
2秒前
3秒前
无私的雪瑶完成签到 ,获得积分10
3秒前
因一完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
传奇3应助HYT采纳,获得10
4秒前
zzz完成签到,获得积分10
4秒前
lianliyou发布了新的文献求助10
4秒前
QianchengZhao应助xx采纳,获得10
5秒前
5秒前
6秒前
南桑发布了新的文献求助10
6秒前
7秒前
nana发布了新的文献求助10
7秒前
8秒前
直率冷之完成签到,获得积分20
8秒前
pp发布了新的文献求助10
8秒前
lee完成签到 ,获得积分10
8秒前
千幻发布了新的文献求助10
9秒前
Ava应助南桑采纳,获得10
10秒前
10秒前
10秒前
sanch发布了新的文献求助10
12秒前
完美世界应助simpleblue采纳,获得10
12秒前
14秒前
可爱的函函应助自信鞯采纳,获得10
14秒前
微笑的冰枫完成签到,获得积分10
15秒前
17秒前
17秒前
17秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 888
Massenspiele, Massenbewegungen. NS-Thingspiel, Arbeiterweibespiel und olympisches Zeremoniell 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3728189
求助须知:如何正确求助?哪些是违规求助? 3273312
关于积分的说明 9981043
捐赠科研通 2988689
什么是DOI,文献DOI怎么找? 1639744
邀请新用户注册赠送积分活动 778973
科研通“疑难数据库(出版商)”最低求助积分说明 747838