Enhancing Short‐Term Wind Speed Prediction Capability of Numerical Weather Prediction Through Machine Learning Methods

期限(时间) 风速 天气预报 数值天气预报 计算机科学 气象学 机器学习 天气预报 人工智能 地理 物理 量子力学
作者
Zhaoliang Zeng,Hongsheng Wu,Zhaohua Liu,Linna Zhao,Zhaoming Liang,Zhehao Liang,Yaqiang Wang
出处
期刊:Journal Of Geophysical Research: Atmospheres [Wiley]
卷期号:129 (24)
标识
DOI:10.1029/2024jd041822
摘要

Abstract Accurate forecasting of wind speed is essential for daily life and social production. While numerical weather prediction products are widely used, they rely on global data and mathematical models to solve atmospheric dynamics' equations, often failing to capture localized micrometeorological phenomena accurately. Factors such as surface conditions, land‐sea differences, and topography, particularly in coastal areas, further impact the accuracy of wind speed forecasts. This study presents a new method to enhance short‐term wind speed forecasting along China's coast by incorporating local and neighborhood spatiotemporal information. The approach integrates meteorological data from adjacent grid points as new inputs in the LightGBM, CatBoost, and XGBoost algorithms. Stacking ensemble technique is then employed to effectively combine with the aforementioned foundational models. Two sets of experiments are conducted: Experiments 1 exclude surrounding information, while Experiments 2 include it. Each set consists of five experiment groups: annual, spring, summer, autumn, and winter. Within each group, four models are tested: XGBoost, LightGBM, CatBoost, and stacking. Results show that incorporating surrounding site information improves forecast accuracy. In all five groups with added surrounding site information, the stacking model performs best. Compared to ECMWF forecast data, the stacking model improves wind speed forecast accuracy from 53.3%, 50.9%, 55.2%, 53.0%, and 54.0% to 77.2%, 73.1%, 76.7%, 78.2%, and 77.1%, respectively. These findings demonstrate the potential effectiveness of the proposed method for improving short‐term wind speed forecasts in China's coastal areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科目三应助咔咔采纳,获得10
刚刚
充电宝应助WANGJD采纳,获得10
1秒前
1秒前
科研通AI6应助jyyg采纳,获得30
1秒前
pcr163应助Angie采纳,获得50
2秒前
2秒前
小猴发布了新的文献求助10
2秒前
DRHSK发布了新的文献求助20
3秒前
Spinnin完成签到,获得积分10
4秒前
国足预备员完成签到 ,获得积分10
4秒前
ding应助piers采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
张德洁完成签到,获得积分10
5秒前
昭玥完成签到,获得积分10
6秒前
6秒前
6秒前
顾矜应助咸鱼采纳,获得10
6秒前
领导范儿应助小王采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得30
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
Ava应助xhDoc采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
常常完成签到,获得积分0
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
脂蛋白抗原应助杨老师采纳,获得10
6秒前
Orange应助后夜采纳,获得10
6秒前
6秒前
666JACS完成签到,获得积分20
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
chenhuiwan应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
科研豆包完成签到 ,获得积分10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600326
求助须知:如何正确求助?哪些是违规求助? 4010520
关于积分的说明 12416659
捐赠科研通 3690261
什么是DOI,文献DOI怎么找? 2034228
邀请新用户注册赠送积分活动 1067656
科研通“疑难数据库(出版商)”最低求助积分说明 952475