Enhancing Short‐Term Wind Speed Prediction Capability of Numerical Weather Prediction Through Machine Learning Methods

期限(时间) 风速 天气预报 数值天气预报 计算机科学 气象学 机器学习 天气预报 人工智能 地理 物理 量子力学
作者
Zhaoliang Zeng,Hongsheng Wu,Zhaohua Liu,Linna Zhao,Zhaoming Liang,Zhehao Liang,Yaqiang Wang
出处
期刊:Journal Of Geophysical Research: Atmospheres [Wiley]
卷期号:129 (24)
标识
DOI:10.1029/2024jd041822
摘要

Abstract Accurate forecasting of wind speed is essential for daily life and social production. While numerical weather prediction products are widely used, they rely on global data and mathematical models to solve atmospheric dynamics' equations, often failing to capture localized micrometeorological phenomena accurately. Factors such as surface conditions, land‐sea differences, and topography, particularly in coastal areas, further impact the accuracy of wind speed forecasts. This study presents a new method to enhance short‐term wind speed forecasting along China's coast by incorporating local and neighborhood spatiotemporal information. The approach integrates meteorological data from adjacent grid points as new inputs in the LightGBM, CatBoost, and XGBoost algorithms. Stacking ensemble technique is then employed to effectively combine with the aforementioned foundational models. Two sets of experiments are conducted: Experiments 1 exclude surrounding information, while Experiments 2 include it. Each set consists of five experiment groups: annual, spring, summer, autumn, and winter. Within each group, four models are tested: XGBoost, LightGBM, CatBoost, and stacking. Results show that incorporating surrounding site information improves forecast accuracy. In all five groups with added surrounding site information, the stacking model performs best. Compared to ECMWF forecast data, the stacking model improves wind speed forecast accuracy from 53.3%, 50.9%, 55.2%, 53.0%, and 54.0% to 77.2%, 73.1%, 76.7%, 78.2%, and 77.1%, respectively. These findings demonstrate the potential effectiveness of the proposed method for improving short‐term wind speed forecasts in China's coastal areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助经法采纳,获得10
刚刚
姜水完成签到,获得积分10
1秒前
3秒前
microsoftchina完成签到,获得积分10
4秒前
zigzag完成签到,获得积分10
6秒前
7秒前
结实星星完成签到,获得积分0
7秒前
潇洒的小鸽子完成签到 ,获得积分10
11秒前
14秒前
microsoftchina关注了科研通微信公众号
16秒前
16秒前
SciGPT应助没风的季节采纳,获得10
18秒前
SciGPT应助魔幻的自中采纳,获得10
19秒前
PlanB完成签到,获得积分10
21秒前
风吹草动玉米粒完成签到,获得积分10
21秒前
小二郎应助外向语山采纳,获得10
23秒前
活力毛豆完成签到 ,获得积分10
24秒前
火星上寻桃完成签到,获得积分10
25秒前
SciGPT应助经法采纳,获得30
26秒前
zjw完成签到,获得积分10
28秒前
里尔吉恩完成签到,获得积分10
32秒前
天天快乐应助Pp采纳,获得10
33秒前
cheems发布了新的文献求助10
35秒前
bkagyin应助luofeiyu采纳,获得10
36秒前
123完成签到,获得积分20
37秒前
38秒前
小土豆完成签到 ,获得积分10
39秒前
andrele应助xxxholic采纳,获得10
39秒前
40秒前
Tristan发布了新的文献求助10
41秒前
hjjj发布了新的文献求助10
42秒前
顺利的觅云完成签到,获得积分10
43秒前
科研通AI2S应助昏睡的墨镜采纳,获得10
44秒前
呆呆要努力完成签到 ,获得积分10
45秒前
英勇小伙完成签到,获得积分10
45秒前
Pp发布了新的文献求助10
46秒前
咿呀哟呼啦完成签到 ,获得积分20
46秒前
47秒前
陈诗诗完成签到,获得积分10
48秒前
香蕉觅云应助风中的凝梦采纳,获得10
50秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3339768
求助须知:如何正确求助?哪些是违规求助? 2967834
关于积分的说明 8631081
捐赠科研通 2647288
什么是DOI,文献DOI怎么找? 1449590
科研通“疑难数据库(出版商)”最低求助积分说明 671464
邀请新用户注册赠送积分活动 660412