Enhancing Short‐Term Wind Speed Prediction Capability of Numerical Weather Prediction Through Machine Learning Methods

期限(时间) 风速 天气预报 数值天气预报 计算机科学 气象学 机器学习 天气预报 人工智能 地理 物理 量子力学
作者
Zhaoliang Zeng,Hongsheng Wu,Zhaohua Liu,Linna Zhao,Zhaoming Liang,Zhehao Liang,Yaqiang Wang
出处
期刊:Journal Of Geophysical Research: Atmospheres [Wiley]
卷期号:129 (24)
标识
DOI:10.1029/2024jd041822
摘要

Abstract Accurate forecasting of wind speed is essential for daily life and social production. While numerical weather prediction products are widely used, they rely on global data and mathematical models to solve atmospheric dynamics' equations, often failing to capture localized micrometeorological phenomena accurately. Factors such as surface conditions, land‐sea differences, and topography, particularly in coastal areas, further impact the accuracy of wind speed forecasts. This study presents a new method to enhance short‐term wind speed forecasting along China's coast by incorporating local and neighborhood spatiotemporal information. The approach integrates meteorological data from adjacent grid points as new inputs in the LightGBM, CatBoost, and XGBoost algorithms. Stacking ensemble technique is then employed to effectively combine with the aforementioned foundational models. Two sets of experiments are conducted: Experiments 1 exclude surrounding information, while Experiments 2 include it. Each set consists of five experiment groups: annual, spring, summer, autumn, and winter. Within each group, four models are tested: XGBoost, LightGBM, CatBoost, and stacking. Results show that incorporating surrounding site information improves forecast accuracy. In all five groups with added surrounding site information, the stacking model performs best. Compared to ECMWF forecast data, the stacking model improves wind speed forecast accuracy from 53.3%, 50.9%, 55.2%, 53.0%, and 54.0% to 77.2%, 73.1%, 76.7%, 78.2%, and 77.1%, respectively. These findings demonstrate the potential effectiveness of the proposed method for improving short‐term wind speed forecasts in China's coastal areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
齐天大圣应助杜兰特采纳,获得30
1秒前
2秒前
星辰大海应助m1采纳,获得30
2秒前
木木发布了新的文献求助10
2秒前
Rondab应助YooLoo采纳,获得10
3秒前
5秒前
Ode发布了新的文献求助10
6秒前
baiyixuan发布了新的文献求助20
7秒前
zhan发布了新的文献求助10
7秒前
皮老八完成签到 ,获得积分10
7秒前
7秒前
顾矜应助莹亮的星空采纳,获得10
9秒前
yang完成签到,获得积分20
9秒前
大模型应助王铂然采纳,获得10
9秒前
李大大完成签到,获得积分20
11秒前
11秒前
yang发布了新的文献求助10
12秒前
任虎完成签到,获得积分10
13秒前
14秒前
15秒前
15秒前
学术渣完成签到,获得积分10
16秒前
酷波er应助coldsky采纳,获得10
16秒前
俏皮的毛巾完成签到 ,获得积分10
17秒前
pcyang完成签到,获得积分10
17秒前
常若冰完成签到,获得积分10
17秒前
枫竹完成签到,获得积分10
18秒前
香蕉觅云应助自信的冬日采纳,获得10
18秒前
19秒前
20秒前
zhan完成签到,获得积分10
20秒前
20秒前
摩登兄弟发布了新的文献求助10
20秒前
20秒前
20秒前
21秒前
wanwan应助学术渣采纳,获得10
21秒前
Chenly完成签到,获得积分10
22秒前
LWJ关闭了LWJ文献求助
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992040
求助须知:如何正确求助?哪些是违规求助? 3533077
关于积分的说明 11260941
捐赠科研通 3272444
什么是DOI,文献DOI怎么找? 1805837
邀请新用户注册赠送积分活动 882682
科研通“疑难数据库(出版商)”最低求助积分说明 809425