BossNAS Family: Block-wisely Self-supervised Neural Architecture Search

计算机科学 人工智能 块(置换群论) 建筑 机器学习 人工神经网络 模式识别(心理学) 数学 几何学 艺术 视觉艺术
作者
Changlin Li,Sihao Lin,Tao Tang,Guangrun Wang,Mingjie Li,Zhihui Li,Xiaojun Chang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tpami.2025.3529517
摘要

Recent advances in hand-crafted neural architectures for visual recognition underscore the pressing need to explore architecture designs comprising diverse building blocks. Concurrently, neural architecture search (NAS) methods have gained traction as a means to alleviate human efforts. Nevertheless, the question of whether NAS methods can efficiently and effectively manage diversified search spaces featuring disparate candidates, such as Convolutional Neural Networks (CNNs) and transformers, remains an open question. In this work, we introduce a novel unsupervised NAS approach called BossNAS ( B l o ck-wisely S elf- s upervised N eural A rchitecture S earch), which aims to address the problem of inaccurate predictive architecture ranking caused by a large weight-sharing space while mitigating potential ranking issue caused by biased supervision. To achieve this, we factorize the search space into blocks and introduce a novel self-supervised training scheme called Ensemble Bootstrapping, to train each block separately in an unsupervised manner. In the search phase, we propose an unsupervised Population-Centric Search, optimizing the candidate architecture towards the population center. Additionally, we enhance our NAS method by integrating masked image modeling and present BossNAS++ to overcome the lack of dense supervision in our block-wise self-supervised NAS. In BossNAS++, we introduce the training technique named Masked Ensemble Bootstrapping for block-wise supernet, accompanied by a Masked Population-Centric Search scheme to promote fairer architecture selection. Our family of models, discovered through BossNAS and BossNAS++, delivers impressive results across various search spaces and datasets. Our transformer model discovered by BossNAS++ attains a remarkable accuracy of 83.2% on ImageNet with only 10.5B MAdds, surpassing DeiT-B by 1.4% while maintaining a lower computation cost. Moreover, our approach excels in architecture rating accuracy, achieving Spearman correlations of 0.78 and 0.76 on the canonical MBConv search space with ImageNet and the NATS-Bench size search space with CIFAR-100, respectively, outperforming state-of-the-art NAS methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dabao发布了新的文献求助10
2秒前
5秒前
完美世界应助小唐采纳,获得10
6秒前
hoho发布了新的文献求助10
7秒前
李小白完成签到,获得积分10
8秒前
无限钻石发布了新的文献求助10
9秒前
xia完成签到,获得积分10
10秒前
10秒前
Owen应助pan采纳,获得10
10秒前
Timon发布了新的文献求助10
11秒前
Orange应助老迟到的书雁采纳,获得10
11秒前
星辰大海应助pen采纳,获得10
12秒前
dabao完成签到,获得积分10
12秒前
Owen应助魁梧的乐曲采纳,获得10
13秒前
郝为民完成签到,获得积分10
13秒前
朴实乐天完成签到,获得积分10
13秒前
xx发布了新的文献求助10
15秒前
可爱的函函应助cheems采纳,获得10
15秒前
Vincent完成签到,获得积分10
16秒前
18秒前
jasmine完成签到 ,获得积分10
19秒前
20秒前
乐乐应助莫里亚蒂采纳,获得10
22秒前
英姑应助Mmmm采纳,获得10
22秒前
23秒前
善学以致用应助无限钻石采纳,获得10
23秒前
隐形曼青应助人小鸭儿大采纳,获得10
24秒前
24秒前
精明凝海发布了新的文献求助10
24秒前
斯文傲芙发布了新的文献求助10
24秒前
24秒前
赵赵发布了新的文献求助10
25秒前
Big PAN Chicken完成签到,获得积分10
26秒前
library2025应助科研通管家采纳,获得20
26秒前
传奇3应助yagami采纳,获得10
26秒前
Hello应助科研通管家采纳,获得10
26秒前
英姑应助科研通管家采纳,获得10
27秒前
爱吃西瓜完成签到,获得积分10
27秒前
李健应助科研通管家采纳,获得10
27秒前
小蘑菇应助科研通管家采纳,获得10
27秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The Politics of Electricity Regulation 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3340131
求助须知:如何正确求助?哪些是违规求助? 2968149
关于积分的说明 8632507
捐赠科研通 2647706
什么是DOI,文献DOI怎么找? 1449774
科研通“疑难数据库(出版商)”最低求助积分说明 671539
邀请新用户注册赠送积分活动 660517