计算机科学
人工智能
块(置换群论)
建筑
机器学习
人工神经网络
模式识别(心理学)
数学
几何学
艺术
视觉艺术
作者
Changlin Li,Sihao Lin,Tao Tang,Guangrun Wang,Mingjie Li,Zhihui Li,Xiaojun Chang
标识
DOI:10.1109/tpami.2025.3529517
摘要
Recent advances in hand-crafted neural architectures for visual recognition underscore the pressing need to explore architecture designs comprising diverse building blocks. Concurrently, neural architecture search (NAS) methods have gained traction as a means to alleviate human efforts. Nevertheless, the question of whether NAS methods can efficiently and effectively manage diversified search spaces featuring disparate candidates, such as Convolutional Neural Networks (CNNs) and transformers, remains an open question. In this work, we introduce a novel unsupervised NAS approach called BossNAS ( B l o ck-wisely S elf- s upervised N eural A rchitecture S earch), which aims to address the problem of inaccurate predictive architecture ranking caused by a large weight-sharing space while mitigating potential ranking issue caused by biased supervision. To achieve this, we factorize the search space into blocks and introduce a novel self-supervised training scheme called Ensemble Bootstrapping, to train each block separately in an unsupervised manner. In the search phase, we propose an unsupervised Population-Centric Search, optimizing the candidate architecture towards the population center. Additionally, we enhance our NAS method by integrating masked image modeling and present BossNAS++ to overcome the lack of dense supervision in our block-wise self-supervised NAS. In BossNAS++, we introduce the training technique named Masked Ensemble Bootstrapping for block-wise supernet, accompanied by a Masked Population-Centric Search scheme to promote fairer architecture selection. Our family of models, discovered through BossNAS and BossNAS++, delivers impressive results across various search spaces and datasets. Our transformer model discovered by BossNAS++ attains a remarkable accuracy of 83.2% on ImageNet with only 10.5B MAdds, surpassing DeiT-B by 1.4% while maintaining a lower computation cost. Moreover, our approach excels in architecture rating accuracy, achieving Spearman correlations of 0.78 and 0.76 on the canonical MBConv search space with ImageNet and the NATS-Bench size search space with CIFAR-100, respectively, outperforming state-of-the-art NAS methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI