BossNAS Family: Block-wisely Self-supervised Neural Architecture Search

计算机科学 人工智能 块(置换群论) 建筑 机器学习 人工神经网络 模式识别(心理学) 数学 艺术 几何学 视觉艺术
作者
Changlin Li,Sihao Lin,Tao Tang,Guangrun Wang,Mingjie Li,Zhihui Li,Xiaojun Chang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-15
标识
DOI:10.1109/tpami.2025.3529517
摘要

Recent advances in hand-crafted neural architectures for visual recognition underscore the pressing need to explore architecture designs comprising diverse building blocks. Concurrently, neural architecture search (NAS) methods have gained traction as a means to alleviate human efforts. Nevertheless, the question of whether NAS methods can efficiently and effectively manage diversified search spaces featuring disparate candidates, such as Convolutional Neural Networks (CNNs) and transformers, remains an open question. In this work, we introduce a novel unsupervised NAS approach called BossNAS ( B l o ck-wisely S elf- s upervised N eural A rchitecture S earch), which aims to address the problem of inaccurate predictive architecture ranking caused by a large weight-sharing space while mitigating potential ranking issue caused by biased supervision. To achieve this, we factorize the search space into blocks and introduce a novel self-supervised training scheme called Ensemble Bootstrapping, to train each block separately in an unsupervised manner. In the search phase, we propose an unsupervised Population-Centric Search, optimizing the candidate architecture towards the population center. Additionally, we enhance our NAS method by integrating masked image modeling and present BossNAS++ to overcome the lack of dense supervision in our block-wise self-supervised NAS. In BossNAS++, we introduce the training technique named Masked Ensemble Bootstrapping for block-wise supernet, accompanied by a Masked Population-Centric Search scheme to promote fairer architecture selection. Our family of models, discovered through BossNAS and BossNAS++, delivers impressive results across various search spaces and datasets. Our transformer model discovered by BossNAS++ attains a remarkable accuracy of 83.2% on ImageNet with only 10.5B MAdds, surpassing DeiT-B by 1.4% while maintaining a lower computation cost. Moreover, our approach excels in architecture rating accuracy, achieving Spearman correlations of 0.78 and 0.76 on the canonical MBConv search space with ImageNet and the NATS-Bench size search space with CIFAR-100, respectively, outperforming state-of-the-art NAS methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
金海涵应助科研通管家采纳,获得20
刚刚
qq应助科研通管家采纳,获得10
刚刚
等待冬亦应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
李爱国应助科研通管家采纳,获得10
刚刚
CAOHOU应助科研通管家采纳,获得10
刚刚
在望应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
qq应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
raemourn应助科研通管家采纳,获得200
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
终梦应助科研通管家采纳,获得10
2秒前
Billy应助科研通管家采纳,获得30
2秒前
CAOHOU应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
科研小白完成签到,获得积分10
2秒前
2秒前
qduxl应助John采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
白羽佳发布了新的文献求助10
2秒前
老迟到的小丸子完成签到,获得积分20
2秒前
2秒前
3秒前
等待听安完成签到 ,获得积分10
3秒前
呜呼发布了新的文献求助10
4秒前
4秒前
5秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842025
求助须知:如何正确求助?哪些是违规求助? 3384185
关于积分的说明 10533034
捐赠科研通 3104519
什么是DOI,文献DOI怎么找? 1709644
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 773953