亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning-based real-time prediction of coronary artery blood flow pressure from computed tomography angiography

物理 计算机断层摄影术 计算机断层血管造影 冠状动脉造影 血流 部分流量储备 医学 血压 血管造影 放射科 冠状动脉疾病 心脏病学 心肌梗塞
作者
Yang Yang,Bao Li,Chuanqi Wen,Luyao Fan,Tengfei Li,Yili Feng,Tongna Wang,Hao Sun,Na Liu,Liyuan Zhang,Jian Liu,Lihua Wang,Youjun Liu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (2)
标识
DOI:10.1063/5.0246660
摘要

The deep learning-based high-performance computational fluid dynamics (CFD) solution method is currently a hot, frontier topic in hemodynamic research. However, accurate predictions of the flow field with different coronary geometries and boundary conditions remain challenging. Given this, this study proposes a method based on deep learning and coronary computed tomography angiography (CTA) that achieves rapid and accurate solutions for blood flow pressure. We established a dataset based on patient-specific data from 370 patients and proposed a deep learning model with dual encoding of boundary condition and geometry. The model inputs boundary conditions obtained by patient-specific physiological parameters and coronary artery geometric information achieved by coronary CTA to iteratively predict the blood flow pressure along the centerline of the coronary artery in real-time. Statistical analysis was performed to evaluate the efficacy of the method by comparing it with CFD simulations. Testing on 112 cases, the root mean square error (RMSE) was 4.34% compared to the blood flow pressure obtained by CFD simulations. The computational efficiency of predictions using the trained deep learning model has improved by 180 times compared to CFD simulations (10 s VS 0.5 h). The proposed method in this study can provide accurate, real-time predictions of blood flow pressure for different coronary geometries and boundary conditions, which significantly improves computational efficiency and reduces costs while maintaining a high level of calculation accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chen发布了新的文献求助10
3秒前
边曦完成签到 ,获得积分10
12秒前
chen关注了科研通微信公众号
12秒前
瑾木发布了新的文献求助10
34秒前
48秒前
51秒前
凩飒应助科研通管家采纳,获得10
52秒前
归尘应助科研通管家采纳,获得10
53秒前
凩飒应助科研通管家采纳,获得10
53秒前
1分钟前
1分钟前
imkhun1021发布了新的文献求助10
1分钟前
likinwei发布了新的文献求助10
1分钟前
KYT发布了新的文献求助10
1分钟前
DD完成签到 ,获得积分10
1分钟前
2分钟前
胖哥发布了新的文献求助10
2分钟前
栗悟饭完成签到,获得积分10
2分钟前
凩飒应助科研通管家采纳,获得30
2分钟前
2分钟前
所所应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
凩飒应助科研通管家采纳,获得30
2分钟前
凩飒应助科研通管家采纳,获得30
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
3分钟前
3分钟前
4分钟前
早晚完成签到 ,获得积分10
4分钟前
CaoJing完成签到 ,获得积分10
4分钟前
胖哥发布了新的文献求助10
4分钟前
凩飒应助科研通管家采纳,获得40
4分钟前
SciGPT应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
赘婿应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
5分钟前
世隐发布了新的文献求助10
5分钟前
5分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455664
求助须知:如何正确求助?哪些是违规求助? 3050901
关于积分的说明 9022990
捐赠科研通 2739435
什么是DOI,文献DOI怎么找? 1502817
科研通“疑难数据库(出版商)”最低求助积分说明 694609
邀请新用户注册赠送积分活动 693400