The impact of bicuspid valve morphology on the selection of TAVI devices: an in-silico study

生物信息学 二尖瓣 形态学(生物学) 选择(遗传算法) 生物 进化生物学 医学 计算机科学 心脏病学 遗传学 主动脉瓣 人工智能 基因
作者
B Grossi,Giulia Luraghi,Sara Barati,C. López Forte,Luca Gerosa,Ottavia Cozzi,Fabrizio D’Ascenzo,Gianluigi Condorelli,Francesco Migliavacca,Giulio G. Stefanini
标识
DOI:10.1093/ehjimp/qyaf018
摘要

Bicuspid aortic valve (BAV) represents a challenge for transcatheter aortic valve implantation (TAVI). Few data are reported about the procedural implications of BAV using different self-expandable devices. The aim of this study is to investigate how BAV and tricuspid aortic valve (TAV) morphologies influence device selection and their impact on the potential development of post-operative conduction disturbances, using a novel in silico approach. Five patients with BAV undergoing TAVI were enrolled. TAVs were virtually modelled within each BAV patient-specific anatomy, resulting in 10 virtual patients. Acurate Neo2 and Evolut R implantations were subsequently simulated across all cases. Post-implantation stresses exerted on both the stent and aortic root were measured, allowing a comparative analysis of the impact of the two valve morphologies. Comparing stent stresses between BAV and TAV configurations, the stress gap increased by 21.96 ± 5.35% (P = 0.01) in Acurate Neo2 cases (n = 6) compared with Evolut R cases (n = 4). The analysis of aortic root stresses showed no significant differences between BAV (n = 5) and TAV (n = 5) configurations, with a mean stress difference of 5.1 ± 8.17% (P > 0.05). Our patient-specific model shows that high radial force devices, such as Evolut R, demonstrate consistent expansion regardless of valve morphology, without increasing the risk of post-implantation conduction disturbances, hence resulting more suitable for BAV cases. Incorporating this methodology into pre-operative planning could support clinicians in selecting the most suitable device with a patient-specific approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助蔡徐坤采纳,获得10
刚刚
1秒前
1秒前
lukescholar发布了新的文献求助10
1秒前
燕小丙完成签到,获得积分10
1秒前
1秒前
玲℃完成签到,获得积分10
1秒前
香蕉觅云应助大111采纳,获得10
1秒前
乐乐应助玛瑙采纳,获得10
1秒前
3秒前
3秒前
天空之城发布了新的文献求助10
3秒前
wanci应助王一博采纳,获得10
3秒前
4秒前
4秒前
哈哈哈哈完成签到,获得积分10
5秒前
诗恋菲宇完成签到,获得积分10
5秒前
6秒前
6秒前
xcl完成签到,获得积分10
6秒前
Z126发布了新的文献求助30
6秒前
6秒前
Jasper应助lulu采纳,获得30
7秒前
7秒前
7秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
June发布了新的文献求助30
8秒前
CodeCraft应助晓世采纳,获得10
8秒前
可乐加冰发布了新的文献求助10
8秒前
ZBQ发布了新的文献求助10
9秒前
9秒前
科研通AI6应助new采纳,获得80
10秒前
Gracebing发布了新的文献求助10
10秒前
calm发布了新的文献求助10
10秒前
TTTTT完成签到,获得积分10
10秒前
靖雁完成签到,获得积分10
10秒前
xxxx完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667453
求助须知:如何正确求助?哪些是违规求助? 4885755
关于积分的说明 15120132
捐赠科研通 4826235
什么是DOI,文献DOI怎么找? 2583865
邀请新用户注册赠送积分活动 1537959
关于科研通互助平台的介绍 1496082