Optical Diagnosis in the Era or Artificial Intelligence

医学 人工智能 计算机科学
作者
Roupen Djinbachian,Douglas K. Rex,Daniel von Renteln
出处
期刊:The American Journal of Gastroenterology [American College of Gastroenterology]
被引量:4
标识
DOI:10.14309/ajg.0000000000003195
摘要

The development of new image enhancement modalities and improved endoscopic imaging quality have not led to increased adoption of resect-and-discard in routine practice. Studies have shown that endoscopists have the capacity to achieve quality thresholds to perform optical diagnosis, however, this has not led to acceptance of optical diagnosis as a replacement for pathology for diminutive (1-5mm) polyps. In recent years, Artificial Intelligence (AI)-based Computer Assisted Characterisation (CADx) of diminutive polyps has recently emerged as a strategy that could potentially represent a breakthrough technology to enable widespread adoption of resect-and-discard. Recent evidence suggests that pathology-based diagnosis is suboptimal, as polyp non-retrieval, fragmentation, sectioning errors, incorrect diagnosis as 'normal mucosa', and inter-pathologist variability limit the efficacy of pathology for the diagnosis of 1-5mm polyps. New paradigms in performing polyp diagnosis with or without AI have emerged to compete with pathology in terms of efficacy. Strategies, such as Autonomous AI, AI-assisted human diagnosis, AI-unassisted human diagnosis, and combined strategies have been proposed as potential paradigms for resect-and-discard, although further research is still required to determine the optimal strategy. Implementation studies with high patient acceptance, where polyps are truly being discarded without histologic diagnosis are paving the way towards normalizing resect-and-discard in routine clinical practice. Ultimately the largest challenges for CADx remain liability perceptions from endoscopists. The potential benefits of AI-based resect-and-discard are many, with very little potential harm. Real world implementation studies are therefore required to pave the way for the acceptability of such strategies in routine practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
碧蓝白玉完成签到,获得积分10
刚刚
论文多多完成签到,获得积分10
刚刚
wangdafa完成签到,获得积分10
刚刚
带头大哥应助Hina采纳,获得200
1秒前
1秒前
禧xi发布了新的文献求助10
1秒前
sunwb83完成签到,获得积分20
2秒前
初雪应助Wendy采纳,获得10
2秒前
星期一完成签到,获得积分10
3秒前
赘婿应助JJH采纳,获得10
3秒前
4秒前
Febridge完成签到,获得积分10
5秒前
Joeswith完成签到,获得积分10
5秒前
lcwait发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
wearelulu完成签到,获得积分10
7秒前
陈AQ完成签到,获得积分10
7秒前
xiaofeizhu完成签到,获得积分20
7秒前
新星完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
Night完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
喻白玉完成签到,获得积分10
9秒前
wy发布了新的文献求助10
9秒前
成就的皮皮虾完成签到,获得积分10
10秒前
孙哈哈完成签到 ,获得积分10
11秒前
11秒前
天天向上完成签到,获得积分10
11秒前
cyl发布了新的文献求助10
11秒前
qingcha完成签到,获得积分10
11秒前
jiajia993完成签到,获得积分10
11秒前
eiland完成签到,获得积分10
12秒前
hqf802802完成签到,获得积分20
12秒前
buqi发布了新的文献求助10
12秒前
Ra321完成签到,获得积分10
12秒前
tangtang完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773811
求助须知:如何正确求助?哪些是违规求助? 5613858
关于积分的说明 15432836
捐赠科研通 4906205
什么是DOI,文献DOI怎么找? 2640110
邀请新用户注册赠送积分活动 1587960
关于科研通互助平台的介绍 1543002