Optical Diagnosis in the Era or Artificial Intelligence

医学 人工智能 计算机科学
作者
Roupen Djinbachian,Douglas K. Rex,Daniel von Renteln
出处
期刊:The American Journal of Gastroenterology [American College of Gastroenterology]
被引量:4
标识
DOI:10.14309/ajg.0000000000003195
摘要

The development of new image enhancement modalities and improved endoscopic imaging quality have not led to increased adoption of resect-and-discard in routine practice. Studies have shown that endoscopists have the capacity to achieve quality thresholds to perform optical diagnosis, however, this has not led to acceptance of optical diagnosis as a replacement for pathology for diminutive (1-5mm) polyps. In recent years, Artificial Intelligence (AI)-based Computer Assisted Characterisation (CADx) of diminutive polyps has recently emerged as a strategy that could potentially represent a breakthrough technology to enable widespread adoption of resect-and-discard. Recent evidence suggests that pathology-based diagnosis is suboptimal, as polyp non-retrieval, fragmentation, sectioning errors, incorrect diagnosis as 'normal mucosa', and inter-pathologist variability limit the efficacy of pathology for the diagnosis of 1-5mm polyps. New paradigms in performing polyp diagnosis with or without AI have emerged to compete with pathology in terms of efficacy. Strategies, such as Autonomous AI, AI-assisted human diagnosis, AI-unassisted human diagnosis, and combined strategies have been proposed as potential paradigms for resect-and-discard, although further research is still required to determine the optimal strategy. Implementation studies with high patient acceptance, where polyps are truly being discarded without histologic diagnosis are paving the way towards normalizing resect-and-discard in routine clinical practice. Ultimately the largest challenges for CADx remain liability perceptions from endoscopists. The potential benefits of AI-based resect-and-discard are many, with very little potential harm. Real world implementation studies are therefore required to pave the way for the acceptability of such strategies in routine practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
93577发布了新的文献求助10
1秒前
科研小白完成签到,获得积分10
1秒前
2秒前
ttttt发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
无花果应助mym采纳,获得10
6秒前
6秒前
喵总完成签到,获得积分10
6秒前
INNER_PEACE完成签到,获得积分10
6秒前
隐形曼青应助昵称11采纳,获得10
6秒前
CY发布了新的文献求助10
7秒前
7秒前
8秒前
liyu发布了新的文献求助10
8秒前
3d54s2完成签到,获得积分10
8秒前
8秒前
圆仔完成签到,获得积分10
8秒前
舒心聪展完成签到,获得积分10
8秒前
碎影关注了科研通微信公众号
10秒前
俊俊完成签到,获得积分10
11秒前
酷波er应助yang采纳,获得10
11秒前
11秒前
WGY发布了新的文献求助30
12秒前
12秒前
12秒前
12秒前
自觉大叔发布了新的文献求助10
12秒前
我叫XXXXXXX发布了新的文献求助10
13秒前
Hello应助CY采纳,获得10
13秒前
123nkjx发布了新的文献求助10
13秒前
13秒前
美好问旋发布了新的文献求助10
13秒前
圆仔发布了新的文献求助10
14秒前
15秒前
无语的丹寒完成签到,获得积分20
15秒前
Owen应助什么奶酪橘汁采纳,获得10
15秒前
木柟完成签到,获得积分10
16秒前
16秒前
华仔应助ff采纳,获得10
16秒前
英姑应助ff采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648816
求助须知:如何正确求助?哪些是违规求助? 4776730
关于积分的说明 15045622
捐赠科研通 4807687
什么是DOI,文献DOI怎么找? 2571022
邀请新用户注册赠送积分活动 1527707
关于科研通互助平台的介绍 1486609