Optical Diagnosis in the Era or Artificial Intelligence

医学 人工智能 计算机科学
作者
Roupen Djinbachian,Douglas K. Rex,Daniel von Renteln
出处
期刊:The American Journal of Gastroenterology [American College of Gastroenterology]
被引量:4
标识
DOI:10.14309/ajg.0000000000003195
摘要

The development of new image enhancement modalities and improved endoscopic imaging quality have not led to increased adoption of resect-and-discard in routine practice. Studies have shown that endoscopists have the capacity to achieve quality thresholds to perform optical diagnosis, however, this has not led to acceptance of optical diagnosis as a replacement for pathology for diminutive (1-5mm) polyps. In recent years, Artificial Intelligence (AI)-based Computer Assisted Characterisation (CADx) of diminutive polyps has recently emerged as a strategy that could potentially represent a breakthrough technology to enable widespread adoption of resect-and-discard. Recent evidence suggests that pathology-based diagnosis is suboptimal, as polyp non-retrieval, fragmentation, sectioning errors, incorrect diagnosis as 'normal mucosa', and inter-pathologist variability limit the efficacy of pathology for the diagnosis of 1-5mm polyps. New paradigms in performing polyp diagnosis with or without AI have emerged to compete with pathology in terms of efficacy. Strategies, such as Autonomous AI, AI-assisted human diagnosis, AI-unassisted human diagnosis, and combined strategies have been proposed as potential paradigms for resect-and-discard, although further research is still required to determine the optimal strategy. Implementation studies with high patient acceptance, where polyps are truly being discarded without histologic diagnosis are paving the way towards normalizing resect-and-discard in routine clinical practice. Ultimately the largest challenges for CADx remain liability perceptions from endoscopists. The potential benefits of AI-based resect-and-discard are many, with very little potential harm. Real world implementation studies are therefore required to pave the way for the acceptability of such strategies in routine practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BAB发布了新的文献求助50
刚刚
Avesta完成签到,获得积分10
1秒前
李勤_秦礼完成签到,获得积分10
2秒前
畅快yig完成签到,获得积分10
2秒前
CipherSage应助dragon采纳,获得10
2秒前
www123qe发布了新的文献求助10
2秒前
2秒前
3秒前
清飞发布了新的文献求助10
3秒前
shw完成签到 ,获得积分10
3秒前
5秒前
M_发布了新的文献求助10
5秒前
6秒前
依米zhang完成签到,获得积分10
6秒前
8秒前
xiaotingMa完成签到,获得积分10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
英姑应助爱笑的香寒采纳,获得10
9秒前
我是老大应助fafafa采纳,获得30
10秒前
仙女爷爷完成签到,获得积分10
10秒前
宁好完成签到 ,获得积分10
10秒前
hhhh关注了科研通微信公众号
10秒前
万能图书馆应助lcc采纳,获得10
11秒前
tiger发布了新的文献求助20
11秒前
李勤_秦礼发布了新的文献求助10
12秒前
wfrg完成签到,获得积分10
12秒前
12秒前
13秒前
axlyjia发布了新的文献求助10
13秒前
13秒前
清秀谷菱完成签到 ,获得积分20
15秒前
量子星尘发布了新的文献求助10
15秒前
彭于晏应助march采纳,获得10
15秒前
18秒前
赵顺勇发布了新的文献求助10
18秒前
LX有理想完成签到 ,获得积分10
21秒前
22秒前
科研通AI6应助李勤_秦礼采纳,获得10
22秒前
ssr发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680387
求助须知:如何正确求助?哪些是违规求助? 4998746
关于积分的说明 15172902
捐赠科研通 4840349
什么是DOI,文献DOI怎么找? 2593972
邀请新用户注册赠送积分活动 1546968
关于科研通互助平台的介绍 1504989