Modelling and Optimizing the Integrity of an Automated Vegetable Leaf Packaging Machine

结构完整性 计算机科学 工程类 结构工程
作者
Oluwole Timothy Ojo,Sesan Peter Ayodeji,Nurudeen A. Azeez
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:47 (11)
标识
DOI:10.1111/jfpe.14775
摘要

ABSTRACT This study emphasized the need for postharvest technology in Nigeria's vegetable production to reduce postharvest losses ranging from 5% to 50%, focusing on enhancing processes of automated packaging unit of vegetable processing plant through the use of artificial neural networks (ANN). The experiment was conducted on a vegetable leaf processing plant with the objective of improving the reliability and performance of the automated packaging unit. Operating parameters such as moisture contents, leave particle size, time taken, throughput capacity, and specific mechanical energy consumption were varied to determine the optimum condition for each parameter. Statistical analysis was performed using R software. The appropriate model was chosen based on selection of the highest coefficient of prediction where the additional terms are significant and the model was not aliased, insignificant lack of fit and the maximization of the “Adjusted R 2 value” and the “Predicted R 2 value.” An optimum packaging condition was obtained at 15% moisture content, and 104.4 particle sizes which gave an optimum packaging time of 0.02 h, optimum packaging capacity of 57.31 kg/h, optimum SMEC value of 0.008 kw/h/kg, optimum repeatability value of 0.128 kg, optimum linearity value of 4.713 cm, optimum accuracy value of 5.2 cm (±0.45). The performance of the ANN model was evaluated using various measures such as mean squared error (MSE), the coefficient of determination ( R 2 ), mean absolute error (MAE), and the adjusted R ‐squared (Adj. R 2 ) for packaging machine. The results of this study suggest that ANN can be used to effectively optimize packaging units of the vegetable leaf processing plant.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
bobobo发布了新的文献求助10
1秒前
Enkcy发布了新的文献求助10
1秒前
CGEA完成签到,获得积分10
1秒前
wuyuan完成签到,获得积分10
2秒前
酷波er应助臻灏采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
风驻云停完成签到,获得积分10
4秒前
Ava应助隔壁的邻家小兴采纳,获得10
6秒前
等待的道消完成签到 ,获得积分10
6秒前
无极微光应助过时的访梦采纳,获得20
6秒前
xiaoxie发布了新的文献求助20
7秒前
7秒前
7秒前
呐呐呐发布了新的文献求助10
9秒前
情怀应助carrotyi采纳,获得10
10秒前
千树怜发布了新的文献求助10
12秒前
12秒前
13秒前
orchid发布了新的文献求助10
14秒前
小尚完成签到,获得积分10
14秒前
小小咸鱼完成签到 ,获得积分10
15秒前
summer完成签到,获得积分10
15秒前
15秒前
Frank完成签到,获得积分10
16秒前
Criminology34发布了新的文献求助300
17秒前
嘿嘿应助乾澪怀新采纳,获得10
17秒前
量子星尘发布了新的文献求助10
19秒前
20秒前
happy星发布了新的文献求助10
20秒前
Boro发布了新的文献求助10
20秒前
21秒前
之_ZH完成签到 ,获得积分10
22秒前
xingyi完成签到,获得积分10
22秒前
无所忌惮的玫瑰果完成签到,获得积分10
23秒前
平贝花应助mtfx采纳,获得10
23秒前
嘴巴张大一点完成签到,获得积分10
23秒前
qigu完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5685045
求助须知:如何正确求助?哪些是违规求助? 5040038
关于积分的说明 15185849
捐赠科研通 4844104
什么是DOI,文献DOI怎么找? 2597110
邀请新用户注册赠送积分活动 1549690
关于科研通互助平台的介绍 1508176