Modelling and Optimizing the Integrity of an Automated Vegetable Leaf Packaging Machine

结构完整性 计算机科学 工程类 结构工程
作者
Oluwole Timothy Ojo,Sesan Peter Ayodeji,Nurudeen A. Azeez
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:47 (11)
标识
DOI:10.1111/jfpe.14775
摘要

ABSTRACT This study emphasized the need for postharvest technology in Nigeria's vegetable production to reduce postharvest losses ranging from 5% to 50%, focusing on enhancing processes of automated packaging unit of vegetable processing plant through the use of artificial neural networks (ANN). The experiment was conducted on a vegetable leaf processing plant with the objective of improving the reliability and performance of the automated packaging unit. Operating parameters such as moisture contents, leave particle size, time taken, throughput capacity, and specific mechanical energy consumption were varied to determine the optimum condition for each parameter. Statistical analysis was performed using R software. The appropriate model was chosen based on selection of the highest coefficient of prediction where the additional terms are significant and the model was not aliased, insignificant lack of fit and the maximization of the “Adjusted R 2 value” and the “Predicted R 2 value.” An optimum packaging condition was obtained at 15% moisture content, and 104.4 particle sizes which gave an optimum packaging time of 0.02 h, optimum packaging capacity of 57.31 kg/h, optimum SMEC value of 0.008 kw/h/kg, optimum repeatability value of 0.128 kg, optimum linearity value of 4.713 cm, optimum accuracy value of 5.2 cm (±0.45). The performance of the ANN model was evaluated using various measures such as mean squared error (MSE), the coefficient of determination ( R 2 ), mean absolute error (MAE), and the adjusted R ‐squared (Adj. R 2 ) for packaging machine. The results of this study suggest that ANN can be used to effectively optimize packaging units of the vegetable leaf processing plant.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Guo99完成签到,获得积分10
1秒前
在水一方应助元谷雪采纳,获得10
2秒前
2秒前
昭昭找不到完成签到,获得积分10
3秒前
3秒前
清脆剑封完成签到,获得积分10
4秒前
4秒前
小米粥发布了新的文献求助10
4秒前
5秒前
6秒前
bsnc完成签到,获得积分10
6秒前
安妮发布了新的文献求助10
6秒前
外向冰绿完成签到,获得积分10
7秒前
传奇3应助高高采纳,获得10
7秒前
风清扬发布了新的文献求助10
7秒前
郝誉发布了新的文献求助10
7秒前
Jasper应助欣喜易形采纳,获得10
8秒前
Uranus发布了新的文献求助10
9秒前
ALDRC完成签到,获得积分10
9秒前
10秒前
或许度发布了新的文献求助10
10秒前
SciGPT应助Xl采纳,获得10
11秒前
wanci应助明理的帆布鞋采纳,获得10
13秒前
科研通AI6应助fzzf采纳,获得10
13秒前
小二郎应助北克采纳,获得10
13秒前
顾矜应助感动的小懒虫采纳,获得10
13秒前
小火花完成签到,获得积分10
14秒前
15秒前
JM关闭了JM文献求助
16秒前
烟花应助微光熠采纳,获得10
16秒前
18秒前
糊涂的汽车完成签到,获得积分10
18秒前
18秒前
愉快的花卷完成签到,获得积分10
18秒前
masro完成签到,获得积分10
19秒前
19秒前
20秒前
草帽发布了新的文献求助10
21秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277