Modelling and Optimizing the Integrity of an Automated Vegetable Leaf Packaging Machine

结构完整性 计算机科学 工程类 结构工程
作者
Oluwole Timothy Ojo,Sesan Peter Ayodeji,Nurudeen A. Azeez
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:47 (11)
标识
DOI:10.1111/jfpe.14775
摘要

ABSTRACT This study emphasized the need for postharvest technology in Nigeria's vegetable production to reduce postharvest losses ranging from 5% to 50%, focusing on enhancing processes of automated packaging unit of vegetable processing plant through the use of artificial neural networks (ANN). The experiment was conducted on a vegetable leaf processing plant with the objective of improving the reliability and performance of the automated packaging unit. Operating parameters such as moisture contents, leave particle size, time taken, throughput capacity, and specific mechanical energy consumption were varied to determine the optimum condition for each parameter. Statistical analysis was performed using R software. The appropriate model was chosen based on selection of the highest coefficient of prediction where the additional terms are significant and the model was not aliased, insignificant lack of fit and the maximization of the “Adjusted R 2 value” and the “Predicted R 2 value.” An optimum packaging condition was obtained at 15% moisture content, and 104.4 particle sizes which gave an optimum packaging time of 0.02 h, optimum packaging capacity of 57.31 kg/h, optimum SMEC value of 0.008 kw/h/kg, optimum repeatability value of 0.128 kg, optimum linearity value of 4.713 cm, optimum accuracy value of 5.2 cm (±0.45). The performance of the ANN model was evaluated using various measures such as mean squared error (MSE), the coefficient of determination ( R 2 ), mean absolute error (MAE), and the adjusted R ‐squared (Adj. R 2 ) for packaging machine. The results of this study suggest that ANN can be used to effectively optimize packaging units of the vegetable leaf processing plant.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aki发布了新的文献求助10
刚刚
阿星发布了新的文献求助10
1秒前
丹丹丹发布了新的文献求助10
1秒前
1秒前
3秒前
3秒前
nxx发布了新的文献求助30
4秒前
香蕉觅云应助风清扬采纳,获得10
5秒前
陶逸豪发布了新的文献求助10
6秒前
7秒前
luan完成签到,获得积分10
7秒前
小胜完成签到 ,获得积分10
8秒前
赘婿应助hoshi采纳,获得10
9秒前
科研通AI2S应助舒博博采纳,获得10
10秒前
Ava应助111采纳,获得10
10秒前
10秒前
Xangel发布了新的文献求助30
10秒前
zero_sky发布了新的文献求助10
10秒前
11秒前
上官若男应助体贴的采蓝采纳,获得10
11秒前
王十三发布了新的文献求助30
12秒前
12秒前
13秒前
ding应助结实的红酒采纳,获得10
14秒前
学术小透明完成签到,获得积分10
14秒前
潇洒代亦完成签到,获得积分10
14秒前
guandada完成签到,获得积分10
15秒前
领导范儿应助sdfer23采纳,获得10
15秒前
小小发布了新的文献求助10
16秒前
乐乐应助风清扬采纳,获得10
16秒前
寒冷凌瑶发布了新的文献求助10
16秒前
爆米花应助陶逸豪采纳,获得10
17秒前
ho应助xczhu采纳,获得10
18秒前
林深完成签到,获得积分10
19秒前
星辰大海应助weilao采纳,获得10
19秒前
傲娇芷容发布了新的文献求助10
19秒前
20秒前
王腾锐发布了新的文献求助10
21秒前
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5354986
求助须知:如何正确求助?哪些是违规求助? 4486944
关于积分的说明 13968439
捐赠科研通 4387716
什么是DOI,文献DOI怎么找? 2410452
邀请新用户注册赠送积分活动 1402979
关于科研通互助平台的介绍 1376705