Modelling and Optimizing the Integrity of an Automated Vegetable Leaf Packaging Machine

结构完整性 计算机科学 工程类 结构工程
作者
Oluwole Timothy Ojo,Sesan Peter Ayodeji,Nurudeen A. Azeez
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:47 (11)
标识
DOI:10.1111/jfpe.14775
摘要

ABSTRACT This study emphasized the need for postharvest technology in Nigeria's vegetable production to reduce postharvest losses ranging from 5% to 50%, focusing on enhancing processes of automated packaging unit of vegetable processing plant through the use of artificial neural networks (ANN). The experiment was conducted on a vegetable leaf processing plant with the objective of improving the reliability and performance of the automated packaging unit. Operating parameters such as moisture contents, leave particle size, time taken, throughput capacity, and specific mechanical energy consumption were varied to determine the optimum condition for each parameter. Statistical analysis was performed using R software. The appropriate model was chosen based on selection of the highest coefficient of prediction where the additional terms are significant and the model was not aliased, insignificant lack of fit and the maximization of the “Adjusted R 2 value” and the “Predicted R 2 value.” An optimum packaging condition was obtained at 15% moisture content, and 104.4 particle sizes which gave an optimum packaging time of 0.02 h, optimum packaging capacity of 57.31 kg/h, optimum SMEC value of 0.008 kw/h/kg, optimum repeatability value of 0.128 kg, optimum linearity value of 4.713 cm, optimum accuracy value of 5.2 cm (±0.45). The performance of the ANN model was evaluated using various measures such as mean squared error (MSE), the coefficient of determination ( R 2 ), mean absolute error (MAE), and the adjusted R ‐squared (Adj. R 2 ) for packaging machine. The results of this study suggest that ANN can be used to effectively optimize packaging units of the vegetable leaf processing plant.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优雅的行云应助wulififi采纳,获得10
1秒前
1秒前
14完成签到,获得积分10
1秒前
fafa完成签到 ,获得积分10
2秒前
宋贺贺完成签到,获得积分10
2秒前
3秒前
3秒前
WangZ发布了新的文献求助10
4秒前
机灵靖琪完成签到,获得积分10
4秒前
4秒前
5秒前
调研昵称发布了新的文献求助30
5秒前
zzzzzwj完成签到,获得积分20
6秒前
7秒前
7秒前
xip完成签到,获得积分10
7秒前
why发布了新的文献求助10
8秒前
msirtx完成签到,获得积分10
8秒前
FashionBoy应助岳小龙采纳,获得10
8秒前
和平使命发布了新的文献求助30
9秒前
9秒前
英俊的铭应助未夕晴采纳,获得10
9秒前
CGAT发布了新的文献求助10
10秒前
可爱的坤完成签到,获得积分10
11秒前
陶子完成签到,获得积分10
11秒前
saluo完成签到,获得积分10
11秒前
2441922098发布了新的文献求助10
11秒前
12秒前
mhl11应助xip采纳,获得10
12秒前
irisjlj完成签到,获得积分10
12秒前
lin应助why采纳,获得10
13秒前
14秒前
15秒前
幽默鱼完成签到,获得积分10
15秒前
晴光完成签到 ,获得积分10
15秒前
15秒前
15秒前
朝晖夕阴完成签到,获得积分10
17秒前
LBXX发布了新的文献求助10
17秒前
LHC完成签到,获得积分10
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303998
求助须知:如何正确求助?哪些是违规求助? 2938076
关于积分的说明 8486509
捐赠科研通 2612165
什么是DOI,文献DOI怎么找? 1426512
科研通“疑难数据库(出版商)”最低求助积分说明 662691
邀请新用户注册赠送积分活动 647276