Modelling and Optimizing the Integrity of an Automated Vegetable Leaf Packaging Machine

结构完整性 计算机科学 工程类 结构工程
作者
Oluwole Timothy Ojo,Sesan Peter Ayodeji,Nurudeen A. Azeez
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:47 (11)
标识
DOI:10.1111/jfpe.14775
摘要

ABSTRACT This study emphasized the need for postharvest technology in Nigeria's vegetable production to reduce postharvest losses ranging from 5% to 50%, focusing on enhancing processes of automated packaging unit of vegetable processing plant through the use of artificial neural networks (ANN). The experiment was conducted on a vegetable leaf processing plant with the objective of improving the reliability and performance of the automated packaging unit. Operating parameters such as moisture contents, leave particle size, time taken, throughput capacity, and specific mechanical energy consumption were varied to determine the optimum condition for each parameter. Statistical analysis was performed using R software. The appropriate model was chosen based on selection of the highest coefficient of prediction where the additional terms are significant and the model was not aliased, insignificant lack of fit and the maximization of the “Adjusted R 2 value” and the “Predicted R 2 value.” An optimum packaging condition was obtained at 15% moisture content, and 104.4 particle sizes which gave an optimum packaging time of 0.02 h, optimum packaging capacity of 57.31 kg/h, optimum SMEC value of 0.008 kw/h/kg, optimum repeatability value of 0.128 kg, optimum linearity value of 4.713 cm, optimum accuracy value of 5.2 cm (±0.45). The performance of the ANN model was evaluated using various measures such as mean squared error (MSE), the coefficient of determination ( R 2 ), mean absolute error (MAE), and the adjusted R ‐squared (Adj. R 2 ) for packaging machine. The results of this study suggest that ANN can be used to effectively optimize packaging units of the vegetable leaf processing plant.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉静语薇发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
英俊的铭应助张均旗采纳,获得10
1秒前
1秒前
小海绵完成签到,获得积分10
1秒前
1秒前
炫炫炫发布了新的文献求助30
2秒前
4秒前
充电宝应助轻松紫翠采纳,获得10
4秒前
彩色耳机完成签到,获得积分10
4秒前
youyi123发布了新的文献求助10
4秒前
生动靖柔完成签到,获得积分10
4秒前
开放穆发布了新的文献求助10
4秒前
冷傲的靖易完成签到,获得积分20
5秒前
清脆映真完成签到,获得积分10
5秒前
科研通AI6应助幼儿园老大采纳,获得10
5秒前
Barium发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
charih发布了新的文献求助10
7秒前
7秒前
郑方形完成签到,获得积分20
7秒前
8秒前
8秒前
万能图书馆应助贰什柒采纳,获得10
8秒前
研友_Zr2mxZ完成签到,获得积分10
8秒前
小九九完成签到 ,获得积分20
8秒前
风趣安青发布了新的文献求助10
9秒前
ding应助生动靖柔采纳,获得10
9秒前
领导范儿应助不得采纳,获得10
9秒前
cici完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
科研通AI6应助微笑采纳,获得10
11秒前
11秒前
Tanya47应助陶醉凝丝采纳,获得10
11秒前
清风完成签到 ,获得积分10
11秒前
11秒前
小黑仙儿完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660809
求助须知:如何正确求助?哪些是违规求助? 4835652
关于积分的说明 15091990
捐赠科研通 4819406
什么是DOI,文献DOI怎么找? 2579257
邀请新用户注册赠送积分活动 1533773
关于科研通互助平台的介绍 1492565