Modelling and Optimizing the Integrity of an Automated Vegetable Leaf Packaging Machine

结构完整性 计算机科学 工程类 结构工程
作者
Oluwole Timothy Ojo,Sesan Peter Ayodeji,Nurudeen A. Azeez
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:47 (11)
标识
DOI:10.1111/jfpe.14775
摘要

ABSTRACT This study emphasized the need for postharvest technology in Nigeria's vegetable production to reduce postharvest losses ranging from 5% to 50%, focusing on enhancing processes of automated packaging unit of vegetable processing plant through the use of artificial neural networks (ANN). The experiment was conducted on a vegetable leaf processing plant with the objective of improving the reliability and performance of the automated packaging unit. Operating parameters such as moisture contents, leave particle size, time taken, throughput capacity, and specific mechanical energy consumption were varied to determine the optimum condition for each parameter. Statistical analysis was performed using R software. The appropriate model was chosen based on selection of the highest coefficient of prediction where the additional terms are significant and the model was not aliased, insignificant lack of fit and the maximization of the “Adjusted R 2 value” and the “Predicted R 2 value.” An optimum packaging condition was obtained at 15% moisture content, and 104.4 particle sizes which gave an optimum packaging time of 0.02 h, optimum packaging capacity of 57.31 kg/h, optimum SMEC value of 0.008 kw/h/kg, optimum repeatability value of 0.128 kg, optimum linearity value of 4.713 cm, optimum accuracy value of 5.2 cm (±0.45). The performance of the ANN model was evaluated using various measures such as mean squared error (MSE), the coefficient of determination ( R 2 ), mean absolute error (MAE), and the adjusted R ‐squared (Adj. R 2 ) for packaging machine. The results of this study suggest that ANN can be used to effectively optimize packaging units of the vegetable leaf processing plant.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助谦让的溪流采纳,获得10
1秒前
1秒前
Vesper完成签到,获得积分10
2秒前
xiaon完成签到,获得积分20
3秒前
janice发布了新的文献求助10
5秒前
6秒前
丘比特应助AllenXia采纳,获得30
9秒前
12秒前
小葵完成签到 ,获得积分10
13秒前
15秒前
ljy1111发布了新的文献求助10
15秒前
15秒前
seven完成签到,获得积分10
18秒前
18秒前
18秒前
19秒前
19秒前
haha完成签到,获得积分10
20秒前
20秒前
学无止境发布了新的文献求助30
23秒前
大个应助無期采纳,获得10
23秒前
豆子发布了新的文献求助10
25秒前
26秒前
大胡子完成签到 ,获得积分10
28秒前
28秒前
聪明凌柏发布了新的文献求助10
32秒前
学无止境完成签到,获得积分0
33秒前
34秒前
hihi发布了新的文献求助10
34秒前
Lucas应助CKJ采纳,获得10
35秒前
37秒前
無期发布了新的文献求助10
38秒前
bkagyin应助科研小白采纳,获得30
39秒前
华仔应助suzy-123采纳,获得10
40秒前
41秒前
wty发布了新的文献求助10
44秒前
46秒前
AllenXia发布了新的文献求助30
46秒前
47秒前
科研通AI5应助皇甫瑾瑜采纳,获得30
47秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735888
求助须知:如何正确求助?哪些是违规求助? 3279592
关于积分的说明 10016230
捐赠科研通 2996269
什么是DOI,文献DOI怎么找? 1644011
邀请新用户注册赠送积分活动 781681
科研通“疑难数据库(出版商)”最低求助积分说明 749425