电合成
价值(数学)
铟
材料科学
环境科学
物理
光电子学
计算机科学
量子力学
电极
电化学
机器学习
作者
Yuntong Sun,Liming Dai,Nicole L. D. Sui,Yinghao Li,Meng Tian,Jingjing Duan,Sheng Chen,Jong Min Lee
标识
DOI:10.1073/pnas.2409620121
摘要
To tackle significant environmental and energy challenges from increased greenhouse gas emissions in the atmosphere, we propose a method that synergistically combines cost-efficient integrated systems with parallel catalysis to produce high-value chemicals from CO 2 , NO, and other gases. We employed asymmetrically stretched InO 5 S with symmetry-breaking indium sites as a highly efficient trifunctional catalysts for NO reduction, CO 2 reduction, and O 2 reduction. Mechanistic studies reveal that the symmetry-breaking at indium sites substantially improves d-band center interactions and adsorption of intermediates, thereby enhancing trifunctional catalytic activity. Employed in a flow electrolysis system, the catalyst achieves continuous and flexible production of NH 3 , HCOO - , and H 2 O 2 , maintaining over 90% Faradaic efficiency at industrial scales. Notably, the parallel electrolysis device reported in this study effectively produces high-value products like NH 4 COOH directly from greenhouse gases in pure water, offering an economically efficient solution for small molecule synthesis and unique insights for the sustainable conversion of inexhaustible gases into valuable products. Therefore, this work possesses considerable potential for future practical applications in sustainable industrial processes.
科研通智能强力驱动
Strongly Powered by AbleSci AI