DG-ALETSK: A High-Dimensional Fuzzy Approach With Simultaneous Feature Selection and Rule Extraction

模糊逻辑 特征选择 计算机科学 特征提取 模糊规则 特征(语言学) 功能(生物学) 算法 模糊控制系统 人工智能 数学 语言学 进化生物学 生物 哲学
作者
Guangdong Xue,Jian Wang,Bin Yuan,Caili Dai
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:31 (11): 3866-3880 被引量:12
标识
DOI:10.1109/tfuzz.2023.3270445
摘要

Fuzzy or neuro-fuzzy systems have been successfully employed in many areas, but their limitation in solving high-dimensional problems remains a challenging task. On the other hand, fuzzy model-based feature selection (FS) approaches have been well studied but, because of the above limitation, are rarely applied to high-dimensional data, which exactly needs feature reduction. In this article, we design a novel adaptive Ln-Exp softmin operator as the approximator of the minimum T-norm, which is equipped in Takagi–Sugeno–Kang (TSK) fuzzy systems to make them capable of dealing with high-dimensional problems. The adaptive Ln-Exp softmin-based TSK (ALETSK) model is developed. Then, we improve the gate function by introducing an enhanced scheme and propose a double groups of gates-based ALETSK (DG-ALETSK) fuzzy approach to simultaneously conduct FS and rule extraction (RE), where the gate function is a function measuring the importance of the features or rules and it acts like a gate. More specifically, a group of feature gates are embedded in the antecedents of ALETSK for FS. Meanwhile, another group of rule gates are embedded in the consequents of ALETSK for RE. In one training phase, the gate parameters are trained along with the system parameters, so that the FS and RE are done together. Our proposed DG-ALETSK is effective and time-saving for FS and RE in the high-dimensional tasks, which is verified by the numerical experiments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
unicorn完成签到,获得积分10
刚刚
LLM完成签到,获得积分10
1秒前
ss发布了新的文献求助10
1秒前
跳跃完成签到,获得积分10
1秒前
jksg发布了新的文献求助10
2秒前
打打应助熙可檬采纳,获得10
3秒前
3秒前
传奇3应助pure采纳,获得10
4秒前
彩色的曼柔完成签到 ,获得积分10
4秒前
enen发布了新的文献求助10
4秒前
魔幻的翠容完成签到 ,获得积分10
4秒前
4秒前
5秒前
5秒前
坦率的香烟完成签到,获得积分10
6秒前
6秒前
funkii完成签到,获得积分10
7秒前
领导范儿应助向北采纳,获得10
7秒前
jiaxingwei发布了新的文献求助10
7秒前
LHL完成签到,获得积分20
7秒前
8秒前
123发布了新的文献求助10
8秒前
9秒前
西貝发布了新的文献求助10
9秒前
CodeCraft应助朴实的南露采纳,获得10
9秒前
情怀应助xxaqs采纳,获得10
9秒前
李爱国应助nieziyun采纳,获得10
9秒前
领导范儿应助wuran采纳,获得10
9秒前
龙凌音完成签到,获得积分10
10秒前
10秒前
zhou完成签到,获得积分20
10秒前
11秒前
Raskye完成签到,获得积分10
11秒前
先生范发布了新的文献求助10
11秒前
MWSURE完成签到,获得积分10
11秒前
Ashley完成签到,获得积分10
11秒前
11秒前
LYSM发布了新的文献求助10
11秒前
大胆听莲完成签到 ,获得积分10
11秒前
FlipFlops发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629957
求助须知:如何正确求助?哪些是违规求助? 4721200
关于积分的说明 14971845
捐赠科研通 4787915
什么是DOI,文献DOI怎么找? 2556638
邀请新用户注册赠送积分活动 1517713
关于科研通互助平台的介绍 1478320