DG-ALETSK: A High-Dimensional Fuzzy Approach With Simultaneous Feature Selection and Rule Extraction

模糊逻辑 特征选择 计算机科学 特征提取 模糊规则 特征(语言学) 功能(生物学) 算法 模糊控制系统 人工智能 数学 语言学 哲学 进化生物学 生物
作者
Guangdong Xue,Jian Wang,Bin Yuan,Caili Dai
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:31 (11): 3866-3880 被引量:12
标识
DOI:10.1109/tfuzz.2023.3270445
摘要

Fuzzy or neuro-fuzzy systems have been successfully employed in many areas, but their limitation in solving high-dimensional problems remains a challenging task. On the other hand, fuzzy model-based feature selection (FS) approaches have been well studied but, because of the above limitation, are rarely applied to high-dimensional data, which exactly needs feature reduction. In this article, we design a novel adaptive Ln-Exp softmin operator as the approximator of the minimum T-norm, which is equipped in Takagi–Sugeno–Kang (TSK) fuzzy systems to make them capable of dealing with high-dimensional problems. The adaptive Ln-Exp softmin-based TSK (ALETSK) model is developed. Then, we improve the gate function by introducing an enhanced scheme and propose a double groups of gates-based ALETSK (DG-ALETSK) fuzzy approach to simultaneously conduct FS and rule extraction (RE), where the gate function is a function measuring the importance of the features or rules and it acts like a gate. More specifically, a group of feature gates are embedded in the antecedents of ALETSK for FS. Meanwhile, another group of rule gates are embedded in the consequents of ALETSK for RE. In one training phase, the gate parameters are trained along with the system parameters, so that the FS and RE are done together. Our proposed DG-ALETSK is effective and time-saving for FS and RE in the high-dimensional tasks, which is verified by the numerical experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
Qiao发布了新的文献求助10
2秒前
承序完成签到,获得积分10
2秒前
3秒前
方墨发布了新的文献求助10
3秒前
食分子发布了新的文献求助10
3秒前
JamesPei应助styz11采纳,获得10
5秒前
科研通AI5应助傻丢采纳,获得30
5秒前
语冰完成签到 ,获得积分10
7秒前
7秒前
段段发布了新的文献求助20
8秒前
10秒前
10秒前
13秒前
乐乐应助姜建正采纳,获得10
13秒前
脑洞疼应助Bey采纳,获得10
14秒前
14秒前
15秒前
小马甲应助肖肖采纳,获得10
15秒前
顾矜应助食分子采纳,获得10
15秒前
仔仔在应助文件撤销了驳回
16秒前
咩咩羊发布了新的文献求助10
16秒前
16秒前
隐形曼青应助伍子胥采纳,获得10
17秒前
18秒前
赵子曰发布了新的文献求助10
19秒前
19秒前
19秒前
21秒前
情怀应助方墨采纳,获得10
22秒前
拼搏的飞薇完成签到,获得积分10
22秒前
xing_应助lx840518采纳,获得10
23秒前
23秒前
凝黛发布了新的文献求助50
23秒前
24秒前
彭于晏应助dadalaile采纳,获得10
24秒前
25秒前
是美羊羊发布了新的文献求助10
26秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3482184
求助须知:如何正确求助?哪些是违规求助? 3071994
关于积分的说明 9125318
捐赠科研通 2763778
什么是DOI,文献DOI怎么找? 1516692
邀请新用户注册赠送积分活动 701746
科研通“疑难数据库(出版商)”最低求助积分说明 700530