Operational characteristics of full random effects modelling (‘frem’) compared to stepwise covariate modelling (‘scm’)

协变量 统计 随机效应模型 选择(遗传算法) 人口 医学 计算机科学 数学 人工智能 荟萃分析 环境卫生 内科学
作者
Lisa F. Amann,Sebastian G. Wicha
出处
期刊:Journal of Pharmacokinetics and Pharmacodynamics [Springer Nature]
卷期号:50 (4): 315-326 被引量:1
标识
DOI:10.1007/s10928-023-09856-w
摘要

Abstract An adequate covariate selection is a key step in population pharmacokinetic modelling. In this study, the automated stepwise covariate modelling technique (‘scm’) was compared to full random effects modelling (‘frem’). We evaluated the power to identify a ‘true’ covariate (covariate with highest correlation to the pharmacokinetic parameter), precision, and accuracy of the parameter-covariate estimates. Furthermore, the predictive performance of the final models was assessed. The scenarios varied in covariate effect sizes, number of individuals (n = 20–500) and covariate correlations (0–90% cov-corr). The PsN ‘frem’ routine provides a 90% confidence intervals around the covariate effects. This was used to evaluate its operational characteristics for a statistical backward elimination procedure, defined as ‘frem posthoc ’ and to facilitate the comparison to ‘scm’. ‘Frem posthoc ’ had a higher power to detect the true covariate with lower bias in small n studies compared to ‘scm’, applied with commonly used settings (forward p < 0.05, backward p < 0.01). This finding was vice versa in a statistically similar setting. For ‘frem posthoc ’, power, precision and accuracy of the covariate coefficient increased with higher number of individuals and covariate effect magnitudes. Without a backward elimination step ‘frem’ models provided unbiased coefficients with highly imprecise coefficients in small n datasets. Yet, precision was superior to final ‘scm’ model precision obtained using common settings. We conclude that ‘frem posthoc ’ is also a suitable method to guide covariate selection, although intended to serve as a full model approach. However, a deliberated selection of automated methods is essential for the modeller and using those methods in small datasets needs to be taken with caution.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助jason采纳,获得10
1秒前
2秒前
趴菜同学完成签到,获得积分10
2秒前
yang完成签到,获得积分10
2秒前
蕃茄鱼发布了新的文献求助10
3秒前
CodeCraft应助xiaoyi采纳,获得10
3秒前
5秒前
崔崔完成签到 ,获得积分20
6秒前
SCI的芷蝶发布了新的文献求助10
6秒前
6秒前
gg完成签到,获得积分20
6秒前
默默松鼠完成签到,获得积分10
7秒前
桐桐应助enchanted采纳,获得10
9秒前
magic完成签到 ,获得积分10
11秒前
lalalala发布了新的文献求助10
11秒前
iuhgnor完成签到,获得积分0
13秒前
14秒前
kid1912应助wdddllll采纳,获得10
15秒前
15秒前
蕃茄鱼完成签到,获得积分10
15秒前
yidemeihaoshijie完成签到 ,获得积分10
16秒前
冰凌心恋发布了新的文献求助30
16秒前
16秒前
图书馆资源少完成签到,获得积分10
19秒前
someone完成签到,获得积分10
20秒前
21秒前
L112233发布了新的文献求助10
22秒前
达不溜不是小不留完成签到,获得积分20
22秒前
Somnus完成签到 ,获得积分10
23秒前
24秒前
东东完成签到,获得积分20
25秒前
sssleep发布了新的文献求助10
29秒前
29秒前
32秒前
华仔应助L112233采纳,获得10
33秒前
33秒前
xiaoai发布了新的文献求助30
33秒前
zho应助陈佳欣采纳,获得10
33秒前
dynamo完成签到 ,获得积分10
34秒前
chen发布了新的文献求助10
34秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Natural Fractures in Coal 300
Product Class 33: N-Arylhydroxylamines 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3387426
求助须知:如何正确求助?哪些是违规求助? 3000181
关于积分的说明 8789809
捐赠科研通 2686064
什么是DOI,文献DOI怎么找? 1471428
科研通“疑难数据库(出版商)”最低求助积分说明 680254
邀请新用户注册赠送积分活动 673060