Sputter-Deposited Mo Thin Films: Multimodal Characterization of Structure, Surface Morphology, Density, Residual Stress, Electrical Resistivity, and Mechanical Response

材料科学 薄膜 残余应力 纳米压痕 表面粗糙度 溅射 溅射沉积 微电子 复合材料 电阻率和电导率 薄板电阻 纳米技术 工程类 电气工程 图层(电子)
作者
Matias Kalaswad,Joyce Custer,Sadhvikas J. Addamane,Ryan M. Khan,Luis Jauregui,Tomas F. Babuska,Amelia Henriksen,Frank W. DelRio‬,Rémi Dingreville,Brad Boyce,David P. Adams
出处
期刊:Integrating materials and manufacturing innovation [Springer Nature]
卷期号:12 (2): 118-129 被引量:2
标识
DOI:10.1007/s40192-023-00297-4
摘要

Multimodal datasets of materials are rich sources of information which can be leveraged for expedited discovery of process–structure–property relationships and for designing materials with targeted structures and/or properties. For this data descriptor article, we provide a multimodal dataset of magnetron sputter-deposited molybdenum (Mo) thin films, which are used in a variety of industries including high temperature coatings, photovoltaics, and microelectronics. In this dataset we explored a process space consisting of 27 unique combinations of sputter power and Ar deposition pressure. The phase, structure, surface morphology, and composition of the Mo thin films were characterized by x-ray diffraction, scanning electron microscopy, atomic force microscopy, and Rutherford backscattering spectrometry. Physical properties—namely, thickness, film stress and sheet resistance—were also measured to provide additional film characteristics and behaviors. Additionally, nanoindentation was utilized to obtain mechanical load-displacement data. The entire dataset consists of 2072 measurements including scalar values (e.g., film stress values), 2D linescans (e.g., x-ray diffractograms), and 3D imagery (e.g., atomic force microscopy images). An additional 1889 quantities, including film hardness, modulus, electrical resistivity, density, and surface roughness, were derived from the experimental datasets using traditional methods. Minimal analysis and discussion of the results are provided in this data descriptor article to limit the authors' preconceived interpretations of the data. Overall, the data modalities are consistent with previous reports of refractory metal thin films, ensuring that a high-quality dataset was generated. The entirety of this data is committed to a public repository in the Materials Data Facility.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无极微光应助白桃味的夏采纳,获得20
刚刚
万能图书馆应助xingxing采纳,获得10
1秒前
1秒前
宁幼萱发布了新的文献求助30
1秒前
狗子完成签到,获得积分10
1秒前
优秀以寒完成签到,获得积分20
1秒前
阿关完成签到,获得积分10
2秒前
传奇3应助Windsyang采纳,获得10
3秒前
JamesPei应助wby0313采纳,获得10
3秒前
王金阳完成签到,获得积分10
3秒前
4秒前
Liens发布了新的文献求助10
5秒前
超越完成签到,获得积分10
5秒前
酷炫凌香完成签到,获得积分20
6秒前
6秒前
6秒前
yimu发布了新的文献求助10
6秒前
各方面发布了新的文献求助30
6秒前
安静一曲完成签到 ,获得积分10
7秒前
大梦发布了新的文献求助10
7秒前
8秒前
todaay完成签到,获得积分20
9秒前
zhang-gentle完成签到,获得积分10
9秒前
10秒前
科研通AI2S应助zhou采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
orixero应助Felix采纳,获得10
11秒前
awst发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
13秒前
大模型应助梦断西楼采纳,获得10
14秒前
gnufgg完成签到,获得积分10
14秒前
Y哈哈哈给Y哈哈哈的求助进行了留言
14秒前
SciGPT应助大梦采纳,获得10
14秒前
橙子陈发布了新的文献求助10
15秒前
Jc发布了新的文献求助10
15秒前
15秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
The polyurethanes book 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610753
求助须知:如何正确求助?哪些是违规求助? 4695233
关于积分的说明 14886085
捐赠科研通 4723350
什么是DOI,文献DOI怎么找? 2545246
邀请新用户注册赠送积分活动 1510017
关于科研通互助平台的介绍 1473110