A novel magnetic AgVO3/rGO/CuFe2O4 hybrid catalyst for efficient hydrogen evolution and photocatalytic degradation

光催化 材料科学 降级(电信) X射线光电子能谱 石墨烯 异质结 化学工程 氧化物 热液循环 复合数 制氢 催化作用 核化学 纳米技术 化学 光电子学 复合材料 有机化学 冶金 工程类 电信 计算机科学
作者
Xueyu Wei,Saraschandra Naraginti,Xiaofan Yang,Xiaoping Xu,Jiyuan Li,Junwei Sun,Zhigang Liu,Jiang Pei
出处
期刊:Environmental Research [Elsevier BV]
卷期号:229: 115948-115948 被引量:17
标识
DOI:10.1016/j.envres.2023.115948
摘要

A superior semiconductor material with efficient charge separation and easy reuse could be a promising route for efficient photocatalytic hydrogen evolution and pollutant degradation. AgVO3 is one of the best visible light active materials which has attracted much attention for several biological and environmental applications. In the aim of enhancing its stability and recyclability a novel AgVO3/rGO/CuFe2O4 heterojunction was prepared by hydrothermal method for hydrogen generation (H2) and 4-nitrophenol (4-NP) degradation as well. The composite was well characterized by XRD, SEM, HR-TEM, XPS and VSM. The morphological images suggested the rod shaped AgVO3 and irregular shaped CuFe2O4 are unevenly distributed on reduced graphene oxide (rGO) layers. The hydrogen evolution results indicated that the composite showed around 8.937 mmol g-1h-1 of H2 generation which was ∼2.3 times and ∼9.2 times higher than pure AgVO3 (3.895 mmol g-1h-1) and CuFe2O4 (0.96 mmol g-1h-1) respectively. The 4-NP degradation efficiency of the prepared composite was observed as 94.7% (k = 0.01841 min-1) which is much higher than the AgVO3 (66.3%) and CuFe2O4 (38.2%) after 4 h of irradiation. The higher efficiency could be attributed to the heterojunction formation and faster charge separation. The radical trapping results indicated that the •OH, O2•- and photogenerated h+ are the main species responsible for efficient activity. The AgVO3/rGO/CuFe2O4 heterojunction showed 49.6 emu/g of saturation magnetization and confirms that it could be easily separated with an external magnet, and showed 85.3% of degradation efficiency even after 6 recycles which indicated its higher stability and recyclability. Thus, our study provides new insight into hydrogen generation and phenol degradation using AgVO3 based recyclable composites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳佟若剑完成签到,获得积分10
刚刚
1秒前
大模型应助庾稀采纳,获得10
1秒前
勤恳的嚓茶完成签到,获得积分10
1秒前
科研王子完成签到,获得积分10
2秒前
LLL完成签到,获得积分10
3秒前
洁净斑马发布了新的文献求助10
3秒前
谦让汝燕完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
闪闪的斑马完成签到,获得积分10
6秒前
书生完成签到,获得积分10
6秒前
柳易槐完成签到,获得积分10
7秒前
pwang_ecust完成签到,获得积分10
7秒前
shuicaoxi完成签到,获得积分20
7秒前
hx完成签到 ,获得积分10
8秒前
务实时光完成签到,获得积分10
8秒前
HCCha完成签到,获得积分10
9秒前
9秒前
...完成签到 ,获得积分0
11秒前
暮晓见完成签到 ,获得积分10
11秒前
13秒前
wx发布了新的文献求助50
13秒前
Tonald Yang发布了新的文献求助10
13秒前
myg123完成签到 ,获得积分10
15秒前
Sean完成签到,获得积分10
17秒前
夏紫儿完成签到 ,获得积分10
17秒前
东方琉璃完成签到,获得积分10
18秒前
典雅的夜安完成签到,获得积分10
18秒前
KouZL完成签到,获得积分10
18秒前
yyy发布了新的文献求助10
19秒前
故渊完成签到,获得积分10
20秒前
20秒前
20秒前
忧心的若云完成签到,获得积分10
20秒前
Lensin完成签到 ,获得积分10
21秒前
TheQ完成签到,获得积分10
21秒前
红叶完成签到,获得积分10
24秒前
羊知鱼完成签到,获得积分10
24秒前
徐旖旎完成签到,获得积分10
24秒前
背完单词好睡觉完成签到 ,获得积分10
24秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015708
求助须知:如何正确求助?哪些是违规求助? 3555661
关于积分的说明 11318291
捐赠科研通 3288879
什么是DOI,文献DOI怎么找? 1812301
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027