光催化
材料科学
降级(电信)
X射线光电子能谱
石墨烯
异质结
化学工程
氧化物
热液循环
复合数
制氢
氢
催化作用
核化学
纳米技术
化学
光电子学
复合材料
有机化学
冶金
电信
计算机科学
工程类
作者
Xueyu Wei,Saraschandra Naraginti,Xiaofan Yang,Xiaoping Xu,Jiyuan Li,Junwei Sun,Zhigang Liu,Jiang Pei
标识
DOI:10.1016/j.envres.2023.115948
摘要
A superior semiconductor material with efficient charge separation and easy reuse could be a promising route for efficient photocatalytic hydrogen evolution and pollutant degradation. AgVO3 is one of the best visible light active materials which has attracted much attention for several biological and environmental applications. In the aim of enhancing its stability and recyclability a novel AgVO3/rGO/CuFe2O4 heterojunction was prepared by hydrothermal method for hydrogen generation (H2) and 4-nitrophenol (4-NP) degradation as well. The composite was well characterized by XRD, SEM, HR-TEM, XPS and VSM. The morphological images suggested the rod shaped AgVO3 and irregular shaped CuFe2O4 are unevenly distributed on reduced graphene oxide (rGO) layers. The hydrogen evolution results indicated that the composite showed around 8.937 mmol g-1h-1 of H2 generation which was ∼2.3 times and ∼9.2 times higher than pure AgVO3 (3.895 mmol g-1h-1) and CuFe2O4 (0.96 mmol g-1h-1) respectively. The 4-NP degradation efficiency of the prepared composite was observed as 94.7% (k = 0.01841 min-1) which is much higher than the AgVO3 (66.3%) and CuFe2O4 (38.2%) after 4 h of irradiation. The higher efficiency could be attributed to the heterojunction formation and faster charge separation. The radical trapping results indicated that the •OH, O2•- and photogenerated h+ are the main species responsible for efficient activity. The AgVO3/rGO/CuFe2O4 heterojunction showed 49.6 emu/g of saturation magnetization and confirms that it could be easily separated with an external magnet, and showed 85.3% of degradation efficiency even after 6 recycles which indicated its higher stability and recyclability. Thus, our study provides new insight into hydrogen generation and phenol degradation using AgVO3 based recyclable composites.
科研通智能强力驱动
Strongly Powered by AbleSci AI