SPP1, a potential therapeutic target and biomarker for lung cancer: functional insights through computational studies

肺癌 生物标志物 癌症 虚拟筛选 基因 计算生物学 生物标志物发现 生物信息学 癌症研究 生物 医学 蛋白质组学 肿瘤科 内科学 遗传学 药物发现
作者
Yamuna Annadurai,Murugesh Easwaran,Shobana Sundar,Lokesh Thangamani,Arun Meyyazhagan,Arunkumar Malaisamy,Jeyakumar Natarajan,P. Shanmughavel
出处
期刊:Journal of Biomolecular Structure & Dynamics [Informa]
卷期号:: 1-16
标识
DOI:10.1080/07391102.2023.2199871
摘要

NIH reported 128 different types of cancer of which lung cancer is the leading cause of mortality. Globally, it is estimated that on average one in every seventeen hospitalized patients was deceased. There are plenty of studies that have been reported on lung cancer draggability and therapeutics, but yet a protein that plays a central specific to cure the disease remains unclear. So, this study is designed to identify the possible therapeutic targets and biomarkers that can be used for the potential treatment of lung cancers. In order to identify differentially expressed genes, 39 microarray datasets of lung cancer patients were obtained from various demographic regions of the GEO database available at NCBI. After annotating statistically, 6229 up-regulated genes and 10324 down-regulated genes were found. Out of 17 up-regulated genes and significant genes, we selected SPP1 (osteopontin) through virtual screening studies. We found functional interactions with the other cancer-associated genes such as VEGF, FGA, JUN, EGFR, and TGFB1. For the virtual screening studies,198 biological compounds were retrieved from the ACNPD database and docked with SPP1 protein (PDBID: 3DSF). In the results, two highly potential compounds secoisolariciresinol diglucoside (-12.9 kcal/mol), and Hesperidin (-12.0 kcal/mol) showed the highest binding affinity. The stability of the complex was accessed by 100 ns simulation in an SPC water model. From the functional insights obtained through these computational studies, we report that SPP1 could be a potential biomarker and successive therapeutic protein target for lung cancer treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助美伢采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
丘比特应助科研通管家采纳,获得10
刚刚
Lucas应助科研通管家采纳,获得10
刚刚
小蘑菇应助科研通管家采纳,获得10
刚刚
今后应助科研通管家采纳,获得10
1秒前
cruise发布了新的文献求助10
1秒前
方赫然应助缓慢山柳采纳,获得10
1秒前
1秒前
ZWQ完成签到,获得积分10
2秒前
3秒前
3秒前
小栩完成签到 ,获得积分10
4秒前
hsy发布了新的文献求助10
4秒前
ZWQ发布了新的文献求助10
4秒前
Ashley发布了新的文献求助10
5秒前
6秒前
尛瞐慶成发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
李健应助穿堂风采纳,获得10
8秒前
柯梦应助否认冶游史采纳,获得10
9秒前
灵巧的飞雪完成签到 ,获得积分10
10秒前
香蕉觅云应助Jolene66采纳,获得10
10秒前
leo发布了新的文献求助30
11秒前
旎旎发布了新的文献求助10
11秒前
HP发布了新的文献求助10
11秒前
滑腻腻的小鱼完成签到,获得积分10
12秒前
甜甜的安荷完成签到,获得积分20
12秒前
12秒前
12秒前
ggbond完成签到,获得积分10
15秒前
小蘑菇应助甜甜的安荷采纳,获得10
15秒前
wangqing发布了新的文献求助10
16秒前
17秒前
17秒前
CCY发布了新的文献求助10
17秒前
美伢发布了新的文献求助10
19秒前
sjj完成签到,获得积分10
19秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3412485
求助须知:如何正确求助?哪些是违规求助? 3015188
关于积分的说明 8868896
捐赠科研通 2702848
什么是DOI,文献DOI怎么找? 1481919
科研通“疑难数据库(出版商)”最低求助积分说明 685086
邀请新用户注册赠送积分活动 679733