石墨氮化碳
光催化
掺杂剂
碳纳米管
材料科学
杂原子
分解水
纳米技术
光催化分解水
兴奋剂
密度泛函理论
氮化碳
电子转移
光化学
化学
催化作用
计算化学
有机化学
光电子学
戒指(化学)
作者
Zhao Mo,Zhihuan Miao,Pengcheng Yan,Peipei Sun,Guanyu Wu,Xingwang Zhu,Cheng Ding,Qiang Zhu,Yucheng Lei,Hui Xu
标识
DOI:10.1016/j.jcis.2023.04.123
摘要
The ideal photocatalyst used for photocatalytic water splitting requires strong light absorption, fast charge separation/transfer ability and abundant active sites. Heteroatom doping offers a promising and rational approach to optimize the photocatalytic activity. However, achieving high photocatalytic performance remains challenging if just relying on single-element doping. Herein, Boron (B) and sulfur (S) dopants are simultaneously introduced into graphitic carbon nitride (g-C3N4) nanotubes by supramolecular self-assembly strategy. The developed B and S co-doped g-C3N4 nanotubes (B,S-TCN) exhibited an outstanding photocatalytic performance in the conversion of H2O into H2 (9.321 mmol g-1h-1), and the corresponding external quantum efficiency (EQE) reached 5.3% under the irradiation of λ = 420 nm. It is well evidenced by the closely combined experimental and (density functional theory) DFT calculations: (1) the introduction of B dopants can facilitate H2O adsorption and drive interatomic electron transfer, leading to efficient water splitting reaction. (2) S dopants can stretch the VB position to promote the oxidation ability of g-C3N4, which can accelerate the consumption of holes and thus inhibit the recombination with electrons. (3) the simultaneous introduction of B and S can engineer the electronic and energy level structural of g-C3N4 for optimizing interior charge transfer. Finally, the purpose of maximizing photocatalytic performance is achieved.
科研通智能强力驱动
Strongly Powered by AbleSci AI