Remaining useful life prediction of bearings using multi-source adversarial online regression under online unknown conditions

计算机科学 人工智能 数据挖掘 加权 机器学习 多源 域适应 分类器(UML) 统计 数学 医学 放射科
作者
Jichao Zhuang,Yudong Cao,Minping Jia,Xiaoli Zhao,Qingjin Peng
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:227: 120276-120276 被引量:8
标识
DOI:10.1016/j.eswa.2023.120276
摘要

Most transfer learning-based methods require sufficient data for training, but the target data may not be available. Also, the health prognosis of target data under unknown conditions is a challenging online few-shot issue, which is still not effectively addressed. In addition, the limited knowledge learned from a single source domain may further limit the extraction of degradation features. To address these challenges, a multi-source adversarial online regression (MAOR) method considering the pseudo domain extension is proposed to predict the remaining useful life of bearings under online unknown conditions. It can obtain a target data stream for each round and perform an online learning task. Specifically, when generating pseudo-domains, the domain-level adaptation is designed by considering the heterogeneous distribution between pseudo-domains and the similarity of manifold between pseudo and source domains. Also, the feature-level adaptation is embedded in a multi-source adversarial adaptation architecture to learn robust domain-invariant features and build the offline model. An offline-online prediction framework is developed to predict online target data streams and update the online model with adaptive weighting. To validate the superiority of the proposed MAOR, two bearing cases are extensively evaluated. The experiment results show that MAOR can achieve significant outcomes in different online tasks with competitive performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
xzh应助花小胖采纳,获得10
1秒前
1秒前
方的圆完成签到,获得积分10
2秒前
现代雪晴发布了新的文献求助10
3秒前
陈澄橙发布了新的文献求助10
3秒前
阿圆发布了新的文献求助10
4秒前
平淡绿柏完成签到,获得积分10
4秒前
4秒前
羊羊航发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
8秒前
SciGPT应助科隆龙采纳,获得10
9秒前
9秒前
10秒前
定西发布了新的文献求助10
10秒前
危机的囧发布了新的文献求助10
11秒前
666发布了新的文献求助10
11秒前
yookia应助嘿撒采纳,获得10
12秒前
玖玖发布了新的文献求助10
13秒前
Atlantic完成签到,获得积分10
14秒前
14秒前
guo完成签到,获得积分10
14秒前
无花果应助QYPANG采纳,获得10
15秒前
烤匠喊你吃鱼完成签到 ,获得积分10
15秒前
yujing发布了新的文献求助10
16秒前
mzone发布了新的文献求助10
16秒前
16秒前
16秒前
16秒前
CR7应助白羊采纳,获得20
17秒前
张俊关注了科研通微信公众号
18秒前
19秒前
19秒前
可爱的函函应助大方弘文采纳,获得10
19秒前
大气海露发布了新的文献求助10
19秒前
19秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962070
求助须知:如何正确求助?哪些是违规求助? 3508372
关于积分的说明 11140413
捐赠科研通 3240967
什么是DOI,文献DOI怎么找? 1791157
邀请新用户注册赠送积分活动 872793
科研通“疑难数据库(出版商)”最低求助积分说明 803371