亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AELGA-FHE: An Augmented Ensemble Learning Based Genetic Algorithm Model for Efficient High Density Fully Homomorphic Encryption

同态加密 计算机科学 加密 遗传算法 算法 理论计算机科学 机器学习 计算机网络
作者
Dhananjay M. Dumbere,Asha Ambhaikar
标识
DOI:10.1109/conit55038.2022.9847859
摘要

Fully homomorphic encryption (FHE) is defined as an encryption scheme that allows arithmetic & logical operations on ciphers, and yields the same effect on decrypted data. Resulting in the widespread use of FHE model for enforcing data privacy in organizations using polynomial arithmetic during encryption and decryption process, and use of different moduli for plain and cipher data. A wide variety of FHE algorithmic implementations are existing and each of these have their own nuances and limitations. It is observed that most of the existing approaches are context-insensitive and do not consider application-specific encryption strength requirements. In order to integrate context-sensitivity and improve encryption strength, These texts offer a Genetic Algorithm design (GA) model for FHE parameter optimization. Results of the proposed GA-FHE model are validated on multiple applications and are stored with respect to their strength classes. These classes, along with their respective FHE configurations are used for training an ensemble deep learning model. This model uses a combination of k Nearest Neighbors (kNN), random forest (RF), linear support vector machine (LSVM), linear regression (LR), and customized 1D Convolutional neural network (CNN) classifiers for strength estimation. Each incoming FHE request is evaluated on these models and their results are augmented to evaluate final FHE moduli parameters. The proposed AELGA-FHE model is tested on a wide variety of textual datasets including 'Cipher text challenge', 'National cipher challenge', & 'Secondary cipher challenge', and strength selection accuracy results are evaluated, strength of encryption, and computational delay. The proposed model outperforms existing FHE methods in terms of these parameters, thereby showcasing its superior deployment capabilities with respect to improved FHE encryption strength and reduced delay needed for high security encryption.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Skyler关注了科研通微信公众号
16秒前
23秒前
ruru123发布了新的文献求助10
29秒前
酷炫远山完成签到 ,获得积分10
31秒前
华仔应助ruru123采纳,获得10
33秒前
1分钟前
Wang完成签到 ,获得积分20
1分钟前
yfz完成签到,获得积分10
1分钟前
li完成签到,获得积分10
2分钟前
2分钟前
2分钟前
lili发布了新的文献求助10
2分钟前
义气静丹完成签到,获得积分20
2分钟前
Wei完成签到 ,获得积分0
2分钟前
ramsey33完成签到 ,获得积分10
2分钟前
2分钟前
ruru123发布了新的文献求助10
2分钟前
2分钟前
bkagyin应助ruru123采纳,获得10
2分钟前
3分钟前
善良思松完成签到,获得积分10
4分钟前
xiaoyinni应助科研通管家采纳,获得20
4分钟前
早睡早起身体好Q完成签到 ,获得积分10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
cuihao发布了新的文献求助10
4分钟前
健壮的花瓣完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
ruru123发布了新的文献求助10
5分钟前
科目三应助ruru123采纳,获得10
5分钟前
kelsiwang应助llll采纳,获得10
5分钟前
5分钟前
Ava应助独特的飞雪采纳,获得10
5分钟前
云汐发布了新的文献求助10
5分钟前
5分钟前
5分钟前
馆长举报Jankin求助涉嫌违规
6分钟前
xiaoyinni应助科研通管家采纳,获得10
6分钟前
xiaoyinni应助科研通管家采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
RF and Microwave Power Amplifiers 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5019614
求助须知:如何正确求助?哪些是违规求助? 4258477
关于积分的说明 13271206
捐赠科研通 4063497
什么是DOI,文献DOI怎么找? 2222616
邀请新用户注册赠送积分活动 1231670
关于科研通互助平台的介绍 1154909