AELGA-FHE: An Augmented Ensemble Learning Based Genetic Algorithm Model for Efficient High Density Fully Homomorphic Encryption

同态加密 计算机科学 加密 遗传算法 算法 理论计算机科学 机器学习 计算机网络
作者
Dhananjay M. Dumbere,Asha Ambhaikar
标识
DOI:10.1109/conit55038.2022.9847859
摘要

Fully homomorphic encryption (FHE) is defined as an encryption scheme that allows arithmetic & logical operations on ciphers, and yields the same effect on decrypted data. Resulting in the widespread use of FHE model for enforcing data privacy in organizations using polynomial arithmetic during encryption and decryption process, and use of different moduli for plain and cipher data. A wide variety of FHE algorithmic implementations are existing and each of these have their own nuances and limitations. It is observed that most of the existing approaches are context-insensitive and do not consider application-specific encryption strength requirements. In order to integrate context-sensitivity and improve encryption strength, These texts offer a Genetic Algorithm design (GA) model for FHE parameter optimization. Results of the proposed GA-FHE model are validated on multiple applications and are stored with respect to their strength classes. These classes, along with their respective FHE configurations are used for training an ensemble deep learning model. This model uses a combination of k Nearest Neighbors (kNN), random forest (RF), linear support vector machine (LSVM), linear regression (LR), and customized 1D Convolutional neural network (CNN) classifiers for strength estimation. Each incoming FHE request is evaluated on these models and their results are augmented to evaluate final FHE moduli parameters. The proposed AELGA-FHE model is tested on a wide variety of textual datasets including 'Cipher text challenge', 'National cipher challenge', & 'Secondary cipher challenge', and strength selection accuracy results are evaluated, strength of encryption, and computational delay. The proposed model outperforms existing FHE methods in terms of these parameters, thereby showcasing its superior deployment capabilities with respect to improved FHE encryption strength and reduced delay needed for high security encryption.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
pengx完成签到,获得积分10
2秒前
3秒前
共享精神应助sunny采纳,获得10
3秒前
白杨发布了新的文献求助20
4秒前
5秒前
微不足道完成签到,获得积分10
6秒前
8秒前
lalala发布了新的文献求助10
10秒前
sumu完成签到,获得积分10
11秒前
西柚完成签到,获得积分10
11秒前
彳亍完成签到,获得积分10
12秒前
huco发布了新的文献求助10
13秒前
琪琪完成签到 ,获得积分10
13秒前
仁爱的伯云完成签到,获得积分10
13秒前
myl完成签到,获得积分10
14秒前
坚强的缘分完成签到,获得积分10
14秒前
思源应助切奇莉亚采纳,获得10
14秒前
feijelly完成签到,获得积分10
15秒前
难过的钥匙完成签到 ,获得积分10
15秒前
花花完成签到 ,获得积分10
15秒前
李子维完成签到 ,获得积分10
16秒前
snowball完成签到,获得积分10
16秒前
17秒前
刘一完成签到 ,获得积分10
18秒前
飘逸天亦完成签到,获得积分10
20秒前
Luna完成签到 ,获得积分10
20秒前
陈补天完成签到,获得积分10
20秒前
20秒前
spss2005完成签到,获得积分10
22秒前
Ray发布了新的文献求助10
24秒前
喝口鲫鱼汤应助莫泽珣采纳,获得10
24秒前
yz完成签到,获得积分10
24秒前
zzuzll完成签到,获得积分10
25秒前
Owen应助sweater采纳,获得10
25秒前
玉桂兔完成签到,获得积分10
25秒前
眼睛大的尔竹完成签到 ,获得积分10
26秒前
27秒前
我是老大应助樱_花qxy采纳,获得10
27秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139874
求助须知:如何正确求助?哪些是违规求助? 2790776
关于积分的说明 7796637
捐赠科研通 2447191
什么是DOI,文献DOI怎么找? 1301692
科研通“疑难数据库(出版商)”最低求助积分说明 626313
版权声明 601194