AELGA-FHE: An Augmented Ensemble Learning Based Genetic Algorithm Model for Efficient High Density Fully Homomorphic Encryption

同态加密 计算机科学 加密 遗传算法 算法 理论计算机科学 机器学习 计算机网络
作者
Dhananjay M. Dumbere,Asha Ambhaikar
标识
DOI:10.1109/conit55038.2022.9847859
摘要

Fully homomorphic encryption (FHE) is defined as an encryption scheme that allows arithmetic & logical operations on ciphers, and yields the same effect on decrypted data. Resulting in the widespread use of FHE model for enforcing data privacy in organizations using polynomial arithmetic during encryption and decryption process, and use of different moduli for plain and cipher data. A wide variety of FHE algorithmic implementations are existing and each of these have their own nuances and limitations. It is observed that most of the existing approaches are context-insensitive and do not consider application-specific encryption strength requirements. In order to integrate context-sensitivity and improve encryption strength, These texts offer a Genetic Algorithm design (GA) model for FHE parameter optimization. Results of the proposed GA-FHE model are validated on multiple applications and are stored with respect to their strength classes. These classes, along with their respective FHE configurations are used for training an ensemble deep learning model. This model uses a combination of k Nearest Neighbors (kNN), random forest (RF), linear support vector machine (LSVM), linear regression (LR), and customized 1D Convolutional neural network (CNN) classifiers for strength estimation. Each incoming FHE request is evaluated on these models and their results are augmented to evaluate final FHE moduli parameters. The proposed AELGA-FHE model is tested on a wide variety of textual datasets including 'Cipher text challenge', 'National cipher challenge', & 'Secondary cipher challenge', and strength selection accuracy results are evaluated, strength of encryption, and computational delay. The proposed model outperforms existing FHE methods in terms of these parameters, thereby showcasing its superior deployment capabilities with respect to improved FHE encryption strength and reduced delay needed for high security encryption.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
owoow发布了新的文献求助10
1秒前
1秒前
1秒前
郑策元完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
烂漫念柏发布了新的文献求助10
6秒前
小怪兽完成签到,获得积分10
6秒前
桃子完成签到,获得积分10
7秒前
英勇白晴发布了新的文献求助10
8秒前
9秒前
大喜子发布了新的文献求助10
10秒前
zzz发布了新的文献求助10
10秒前
Joanne完成签到 ,获得积分10
10秒前
11秒前
12秒前
12秒前
entity完成签到,获得积分10
13秒前
阳阳语晗发布了新的文献求助10
13秒前
隐形曼青应助iris采纳,获得30
14秒前
owoow发布了新的文献求助10
14秒前
15秒前
烂漫念柏完成签到,获得积分10
15秒前
劳永杰发布了新的文献求助10
15秒前
桃子发布了新的文献求助10
16秒前
恰你完成签到,获得积分10
18秒前
19秒前
19秒前
动听的不尤完成签到 ,获得积分10
20秒前
23秒前
木东发布了新的文献求助10
24秒前
25秒前
fancynancy完成签到,获得积分10
25秒前
26秒前
风中的夕阳完成签到,获得积分10
26秒前
26秒前
小孙孙发布了新的文献求助10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967809
求助须知:如何正确求助?哪些是违规求助? 3512946
关于积分的说明 11165553
捐赠科研通 3247977
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578