亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Ultra-sparse View CT Imaging Method Based on X-ray2CTNet

计算机科学 人工智能 迭代重建 投影(关系代数) 计算机视觉 算法
作者
Xueqin Sun,Xuru Li,Ping Chen
出处
期刊:IEEE transactions on computational imaging 卷期号:8: 733-742 被引量:6
标识
DOI:10.1109/tci.2022.3201390
摘要

The prediction of the internal ballistic performance of solid rocket motors (SRMs) mainly depends on the observation of burning surface regression. The existing techniques have not yet achieved real-time, accurate and intuitive observations of the grain structural dynamic changes under hot conditions. Computed tomography (CT) imaging based on X-ray can be directly used to analyze the burning surface of SRM. However, neither the conventional CT imaging mode nor the current reconstruction algorithms, including full-view and sparse-view reconstruction methods, can be used in ignition tests. It is necessary to break through the limitation of sparse sampling and research ultra-sparse view reconstruction. Although computer vision technology has shown that 3D shapes can be estimated from very few 2D RGB images via deep learning, it remains challenging to reconstruct volumes from two 2D X-ray images. To tackle this issue here, we propose a 3D reconstruction network based on ultra-sparse projection views, namely X-ray2CTNet, which takes the 2D projections of any two orthogonal views as inputs to implement cross-dimensional inverse mapping from 2D (X-rays) to 3D (CT). In addition, to solve the insufficient dataset problem, training sets are constructed by simulating different models of grain regression for a certain type of propellant and utilizing a CT simulation platform. We pour fake grains that are the same as those of the simulation models to acquire the actual projections of two views for reconstructing the 3D volume. The obtained results prove the feasibility of our method. The proposed method provides a possibility for dynamic monitoring of burning surface regressions for SRMs in ground ignition tests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助聪明怜阳采纳,获得10
8秒前
11秒前
14秒前
19秒前
James发布了新的文献求助10
23秒前
Pluto发布了新的文献求助10
27秒前
31秒前
彭婉怡yyyy完成签到,获得积分10
36秒前
CodeCraft应助LLYNL采纳,获得10
37秒前
文静听南完成签到 ,获得积分10
37秒前
量子星尘发布了新的文献求助10
42秒前
万能图书馆应助刘海清采纳,获得30
42秒前
48秒前
53秒前
1分钟前
小白菜完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
李健应助科研通管家采纳,获得10
1分钟前
Orange应助科研通管家采纳,获得10
1分钟前
共享精神应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
1分钟前
Ldq发布了新的文献求助10
1分钟前
搜集达人应助个性的亦云采纳,获得10
1分钟前
Tumumu完成签到,获得积分10
1分钟前
1分钟前
刘海清发布了新的文献求助30
1分钟前
susu完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482258
求助须知:如何正确求助?哪些是违规求助? 4583190
关于积分的说明 14388800
捐赠科研通 4512190
什么是DOI,文献DOI怎么找? 2472722
邀请新用户注册赠送积分活动 1458988
关于科研通互助平台的介绍 1432375