An Ultra-sparse View CT Imaging Method Based on X-ray2CTNet

计算机科学 人工智能 迭代重建 投影(关系代数) 计算机视觉 算法
作者
Xueqin Sun,Xuru Li,Ping Chen
出处
期刊:IEEE transactions on computational imaging 卷期号:8: 733-742 被引量:5
标识
DOI:10.1109/tci.2022.3201390
摘要

The prediction of the internal ballistic performance of solid rocket motors (SRMs) mainly depends on the observation of burning surface regression. The existing techniques have not yet achieved real-time, accurate and intuitive observations of the grain structural dynamic changes under hot conditions. Computed tomography (CT) imaging based on X-ray can be directly used to analyze the burning surface of SRM. However, neither the conventional CT imaging mode nor the current reconstruction algorithms, including full-view and sparse-view reconstruction methods, can be used in ignition tests. It is necessary to break through the limitation of sparse sampling and research ultra-sparse view reconstruction. Although computer vision technology has shown that 3D shapes can be estimated from very few 2D RGB images via deep learning, it remains challenging to reconstruct volumes from two 2D X-ray images. To tackle this issue here, we propose a 3D reconstruction network based on ultra-sparse projection views, namely X-ray2CTNet, which takes the 2D projections of any two orthogonal views as inputs to implement cross-dimensional inverse mapping from 2D (X-rays) to 3D (CT). In addition, to solve the insufficient dataset problem, training sets are constructed by simulating different models of grain regression for a certain type of propellant and utilizing a CT simulation platform. We pour fake grains that are the same as those of the simulation models to acquire the actual projections of two views for reconstructing the 3D volume. The obtained results prove the feasibility of our method. The proposed method provides a possibility for dynamic monitoring of burning surface regressions for SRMs in ground ignition tests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷酷的起眸完成签到,获得积分10
刚刚
细腻沅完成签到,获得积分10
刚刚
LILING完成签到,获得积分10
刚刚
123发布了新的文献求助10
1秒前
赖床艺术家完成签到,获得积分10
2秒前
领导范儿应助通~采纳,获得10
3秒前
端庄的黑米完成签到,获得积分10
3秒前
3秒前
领导范儿应助坤坤采纳,获得10
3秒前
4秒前
神勇的雅香应助司徒迎曼采纳,获得10
4秒前
4秒前
bkagyin应助椰子采纳,获得10
4秒前
Owen应助舒服的茹嫣采纳,获得10
4秒前
呼吸之野应助按住心动采纳,获得20
5秒前
5秒前
身为风帆发布了新的文献求助10
5秒前
changjiaren完成签到,获得积分10
5秒前
风中的怜阳完成签到,获得积分10
6秒前
自信号厂完成签到 ,获得积分10
6秒前
小蘑菇应助ccc采纳,获得10
7秒前
shuo完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
aich完成签到,获得积分10
8秒前
上官若男应助YE采纳,获得10
9秒前
Jasper应助YaoX采纳,获得10
9秒前
天天快乐应助威武绿真采纳,获得10
9秒前
MADKAI发布了新的文献求助10
9秒前
10秒前
慕青应助April采纳,获得10
10秒前
123完成签到,获得积分10
10秒前
Xu发布了新的文献求助10
10秒前
manan发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
张张完成签到,获得积分10
11秒前
Dream发布了新的文献求助30
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740