亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Ultra-sparse View CT Imaging Method Based on X-ray2CTNet

计算机科学 人工智能 迭代重建 投影(关系代数) 计算机视觉 算法
作者
Xueqin Sun,Xuru Li,Ping Chen
出处
期刊:IEEE transactions on computational imaging 卷期号:8: 733-742 被引量:6
标识
DOI:10.1109/tci.2022.3201390
摘要

The prediction of the internal ballistic performance of solid rocket motors (SRMs) mainly depends on the observation of burning surface regression. The existing techniques have not yet achieved real-time, accurate and intuitive observations of the grain structural dynamic changes under hot conditions. Computed tomography (CT) imaging based on X-ray can be directly used to analyze the burning surface of SRM. However, neither the conventional CT imaging mode nor the current reconstruction algorithms, including full-view and sparse-view reconstruction methods, can be used in ignition tests. It is necessary to break through the limitation of sparse sampling and research ultra-sparse view reconstruction. Although computer vision technology has shown that 3D shapes can be estimated from very few 2D RGB images via deep learning, it remains challenging to reconstruct volumes from two 2D X-ray images. To tackle this issue here, we propose a 3D reconstruction network based on ultra-sparse projection views, namely X-ray2CTNet, which takes the 2D projections of any two orthogonal views as inputs to implement cross-dimensional inverse mapping from 2D (X-rays) to 3D (CT). In addition, to solve the insufficient dataset problem, training sets are constructed by simulating different models of grain regression for a certain type of propellant and utilizing a CT simulation platform. We pour fake grains that are the same as those of the simulation models to acquire the actual projections of two views for reconstructing the 3D volume. The obtained results prove the feasibility of our method. The proposed method provides a possibility for dynamic monitoring of burning surface regressions for SRMs in ground ignition tests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
考拉完成签到 ,获得积分20
2秒前
5秒前
15秒前
21秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
23秒前
28秒前
40秒前
46秒前
科研通AI6.1应助难过千凡采纳,获得10
51秒前
53秒前
白华苍松完成签到,获得积分10
56秒前
寒冷念文完成签到,获得积分10
58秒前
1分钟前
1分钟前
1分钟前
1分钟前
难过千凡发布了新的文献求助10
1分钟前
1分钟前
vv完成签到 ,获得积分10
1分钟前
科研通AI6.1应助难过千凡采纳,获得10
1分钟前
1分钟前
lianyang完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
乐乐应助nanjiluotuo11采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
难过千凡发布了新的文献求助10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
行走的鱼完成签到,获得积分10
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5731949
求助须知:如何正确求助?哪些是违规求助? 5334787
关于积分的说明 15321844
捐赠科研通 4877719
什么是DOI,文献DOI怎么找? 2620595
邀请新用户注册赠送积分活动 1569886
关于科研通互助平台的介绍 1526370