An Ultra-sparse View CT Imaging Method Based on X-ray2CTNet

计算机科学 人工智能 迭代重建 投影(关系代数) 计算机视觉 算法
作者
Xueqin Sun,Xuru Li,Ping Chen
出处
期刊:IEEE transactions on computational imaging 卷期号:8: 733-742 被引量:5
标识
DOI:10.1109/tci.2022.3201390
摘要

The prediction of the internal ballistic performance of solid rocket motors (SRMs) mainly depends on the observation of burning surface regression. The existing techniques have not yet achieved real-time, accurate and intuitive observations of the grain structural dynamic changes under hot conditions. Computed tomography (CT) imaging based on X-ray can be directly used to analyze the burning surface of SRM. However, neither the conventional CT imaging mode nor the current reconstruction algorithms, including full-view and sparse-view reconstruction methods, can be used in ignition tests. It is necessary to break through the limitation of sparse sampling and research ultra-sparse view reconstruction. Although computer vision technology has shown that 3D shapes can be estimated from very few 2D RGB images via deep learning, it remains challenging to reconstruct volumes from two 2D X-ray images. To tackle this issue here, we propose a 3D reconstruction network based on ultra-sparse projection views, namely X-ray2CTNet, which takes the 2D projections of any two orthogonal views as inputs to implement cross-dimensional inverse mapping from 2D (X-rays) to 3D (CT). In addition, to solve the insufficient dataset problem, training sets are constructed by simulating different models of grain regression for a certain type of propellant and utilizing a CT simulation platform. We pour fake grains that are the same as those of the simulation models to acquire the actual projections of two views for reconstructing the 3D volume. The obtained results prove the feasibility of our method. The proposed method provides a possibility for dynamic monitoring of burning surface regressions for SRMs in ground ignition tests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Isabel完成签到,获得积分10
刚刚
tfsn20完成签到,获得积分0
1秒前
活力安南完成签到,获得积分10
1秒前
sole发布了新的文献求助30
2秒前
潇潇暮雨发布了新的文献求助30
2秒前
Dreamboat发布了新的文献求助10
2秒前
开放沛柔完成签到,获得积分10
2秒前
猫大熊完成签到,获得积分10
2秒前
particularc发布了新的文献求助10
3秒前
BrillSpikes发布了新的文献求助10
3秒前
轻松的衬衫完成签到,获得积分10
4秒前
等风的人完成签到,获得积分10
4秒前
4秒前
英俊的铭应助wanci采纳,获得10
4秒前
双黄应助周周采纳,获得10
4秒前
双黄应助周周采纳,获得10
4秒前
所所应助周周采纳,获得10
4秒前
lalal完成签到,获得积分10
5秒前
LmaPN7发布了新的文献求助20
5秒前
万能图书馆应助小萌采纳,获得10
6秒前
6秒前
思源应助wanci采纳,获得30
6秒前
7秒前
hy完成签到 ,获得积分10
7秒前
东旭大兵完成签到,获得积分10
7秒前
7秒前
阳光的草丛完成签到,获得积分10
8秒前
ziyue应助喝粥阿旺采纳,获得10
8秒前
Susan完成签到,获得积分10
8秒前
8秒前
10秒前
11秒前
xiexiaopa发布了新的文献求助10
11秒前
Jasper应助lx840518采纳,获得10
11秒前
12秒前
ghost应助HY采纳,获得10
13秒前
13秒前
14秒前
李健应助盛开的芒果采纳,获得10
15秒前
今天进步了吗完成签到,获得积分10
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308005
求助须知:如何正确求助?哪些是违规求助? 2941518
关于积分的说明 8503953
捐赠科研通 2616072
什么是DOI,文献DOI怎么找? 1429372
科研通“疑难数据库(出版商)”最低求助积分说明 663724
邀请新用户注册赠送积分活动 648679