Measuring latent combinational novelty of technology

新颖性 计算机科学 人工智能 组合逻辑 新知识检测 算法 神学 逻辑门 哲学
作者
Xiaoling Sun,Na Chen,Kun Ding
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:210: 118564-118564
标识
DOI:10.1016/j.eswa.2022.118564
摘要

• A measure is proposed to identify the combinational novelty of technology. • The measure shows better performance compared to single indicators using AI data. • High-novelty/high-conventional patents have a relatively higher future impact. Novelty is considered an important driving force of scientific and technological innovation. How to measure novelty has drawn much attention in recent years. The comprehensive measurement of the novelty could help to identify novel patents as soon as possible and reduce the risk of delayed identification of important technologies. This research introduces a comprehensive measure that could identify novel technology using IPC in patents from a knowledge combinational perspective. The existing methods for measuring novelty commonly use the co-occurrence of knowledge pairwise combinations and identify novelty by assessing the new pairings that did not exist. Besides considering the number of direct co-occurrence of knowledge combinations to evaluate novelty, the proposed method integrates indirect link probability and hierarchical similarity in the IPC tree structure. The feasibility of the measure is demonstrated by applying it to the patent data in the field of Artificial Intelligence (AI). Compared with previous measures, the proposed measure could capture the latent distance between knowledge pairings and identify more novel combinations. The relationship between novelty and citations in the AI field shows that: High-novelty/high-conventional patents have a higher average number of citations and a higher probability of being “hit” patents, indicating that novel patents build on prior knowledge have a relatively higher future impact.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
齐小妮发布了新的文献求助10
1秒前
1秒前
Zoe发布了新的文献求助10
1秒前
斯文败类应助甜美鬼神采纳,获得10
1秒前
善学以致用应助sugarballer采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
kangnakangna完成签到,获得积分10
2秒前
2秒前
夏夜微凉发布了新的文献求助10
2秒前
3秒前
七凉完成签到,获得积分10
3秒前
Owen应助zwy109采纳,获得10
3秒前
香蕉觅云应助blueblue采纳,获得10
4秒前
笑点低凡桃完成签到,获得积分10
5秒前
小小蟋蟀完成签到,获得积分10
5秒前
秀丽思远完成签到,获得积分10
5秒前
科研通AI5应助糊涂的百川采纳,获得10
6秒前
弱水发布了新的文献求助10
6秒前
hippo发布了新的文献求助10
6秒前
苒苒完成签到,获得积分10
6秒前
烂漫饼干完成签到,获得积分10
6秒前
Akim应助失眠小猫咪采纳,获得10
6秒前
JamesPei应助123采纳,获得10
6秒前
7秒前
曹煜晗发布了新的文献求助10
7秒前
7秒前
大模型应助召唤兽采纳,获得10
7秒前
7秒前
某某某完成签到,获得积分10
8秒前
桐桐应助李不开你采纳,获得10
9秒前
9秒前
cjy完成签到,获得积分10
9秒前
9秒前
英姑应助仗炮由纪采纳,获得10
9秒前
王大敏给王大敏的求助进行了留言
10秒前
mingxuan完成签到,获得积分10
10秒前
殷勤的咖啡完成签到,获得积分10
11秒前
希望天下0贩的0应助11采纳,获得10
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603838
求助须知:如何正确求助?哪些是违规求助? 4012374
关于积分的说明 12423535
捐赠科研通 3692896
什么是DOI,文献DOI怎么找? 2035955
邀请新用户注册赠送积分活动 1069072
科研通“疑难数据库(出版商)”最低求助积分说明 953559