已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Measuring latent combinational novelty of technology

新颖性 计算机科学 人工智能 组合逻辑 新知识检测 算法 神学 逻辑门 哲学
作者
Xiaoling Sun,Na Chen,Kun Ding
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:210: 118564-118564
标识
DOI:10.1016/j.eswa.2022.118564
摘要

• A measure is proposed to identify the combinational novelty of technology. • The measure shows better performance compared to single indicators using AI data. • High-novelty/high-conventional patents have a relatively higher future impact. Novelty is considered an important driving force of scientific and technological innovation. How to measure novelty has drawn much attention in recent years. The comprehensive measurement of the novelty could help to identify novel patents as soon as possible and reduce the risk of delayed identification of important technologies. This research introduces a comprehensive measure that could identify novel technology using IPC in patents from a knowledge combinational perspective. The existing methods for measuring novelty commonly use the co-occurrence of knowledge pairwise combinations and identify novelty by assessing the new pairings that did not exist. Besides considering the number of direct co-occurrence of knowledge combinations to evaluate novelty, the proposed method integrates indirect link probability and hierarchical similarity in the IPC tree structure. The feasibility of the measure is demonstrated by applying it to the patent data in the field of Artificial Intelligence (AI). Compared with previous measures, the proposed measure could capture the latent distance between knowledge pairings and identify more novel combinations. The relationship between novelty and citations in the AI field shows that: High-novelty/high-conventional patents have a higher average number of citations and a higher probability of being “hit” patents, indicating that novel patents build on prior knowledge have a relatively higher future impact.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Capybara完成签到,获得积分10
2秒前
阔达的马里奥完成签到 ,获得积分10
4秒前
善学以致用应助王w采纳,获得10
6秒前
6秒前
飞翔的梦完成签到,获得积分10
7秒前
llw发布了新的文献求助10
7秒前
8秒前
9秒前
13秒前
老虎皮发布了新的文献求助10
13秒前
禾沐发布了新的文献求助10
15秒前
15秒前
L14发布了新的文献求助10
16秒前
龟龟完成签到 ,获得积分10
17秒前
17秒前
20秒前
明亮不乐发布了新的文献求助10
21秒前
kang完成签到 ,获得积分10
23秒前
25秒前
25秒前
26秒前
Ava应助L14采纳,获得10
29秒前
畅畅完成签到,获得积分20
29秒前
lx完成签到,获得积分10
30秒前
夜安发布了新的文献求助10
32秒前
Lee发布了新的文献求助10
32秒前
qucheng完成签到 ,获得积分10
32秒前
好久不见完成签到 ,获得积分10
34秒前
领导范儿应助lx采纳,获得10
36秒前
36秒前
37秒前
38秒前
Samming完成签到 ,获得积分20
39秒前
彩虹发布了新的文献求助10
40秒前
melo发布了新的文献求助10
41秒前
42秒前
44秒前
辉hui发布了新的文献求助10
45秒前
高分求助中
Drug Prescribing in Renal Failure: Dosing Guidelines for Adults and Children 5th Edition 2000
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 500
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Armour of the english knight 1400-1450 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3712684
求助须知:如何正确求助?哪些是违规求助? 3260827
关于积分的说明 9915144
捐赠科研通 2974373
什么是DOI,文献DOI怎么找? 1630898
邀请新用户注册赠送积分活动 773751
科研通“疑难数据库(出版商)”最低求助积分说明 744404