Measuring latent combinational novelty of technology

新颖性 计算机科学 人工智能 组合逻辑 新知识检测 算法 神学 逻辑门 哲学
作者
Xiaoling Sun,Na Chen,Kun Ding
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:210: 118564-118564
标识
DOI:10.1016/j.eswa.2022.118564
摘要

• A measure is proposed to identify the combinational novelty of technology. • The measure shows better performance compared to single indicators using AI data. • High-novelty/high-conventional patents have a relatively higher future impact. Novelty is considered an important driving force of scientific and technological innovation. How to measure novelty has drawn much attention in recent years. The comprehensive measurement of the novelty could help to identify novel patents as soon as possible and reduce the risk of delayed identification of important technologies. This research introduces a comprehensive measure that could identify novel technology using IPC in patents from a knowledge combinational perspective. The existing methods for measuring novelty commonly use the co-occurrence of knowledge pairwise combinations and identify novelty by assessing the new pairings that did not exist. Besides considering the number of direct co-occurrence of knowledge combinations to evaluate novelty, the proposed method integrates indirect link probability and hierarchical similarity in the IPC tree structure. The feasibility of the measure is demonstrated by applying it to the patent data in the field of Artificial Intelligence (AI). Compared with previous measures, the proposed measure could capture the latent distance between knowledge pairings and identify more novel combinations. The relationship between novelty and citations in the AI field shows that: High-novelty/high-conventional patents have a higher average number of citations and a higher probability of being “hit” patents, indicating that novel patents build on prior knowledge have a relatively higher future impact.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cathy-w完成签到,获得积分10
1秒前
1秒前
科研通AI2S应助zhurui采纳,获得10
2秒前
小艳发布了新的文献求助10
3秒前
glay完成签到 ,获得积分10
4秒前
4秒前
CipherSage应助嗷嗷采纳,获得10
4秒前
5秒前
5秒前
Hello应助DK不吃榴莲233采纳,获得10
6秒前
明灯三千完成签到,获得积分10
6秒前
flance发布了新的文献求助10
6秒前
冥月发布了新的文献求助10
6秒前
6秒前
6秒前
幸福妙柏完成签到 ,获得积分10
6秒前
7秒前
希望天下0贩的0应助hxldsb采纳,获得30
7秒前
希望天下0贩的0应助小美采纳,获得10
7秒前
7秒前
还在吗完成签到,获得积分10
8秒前
x笑一发布了新的文献求助20
8秒前
yuw完成签到 ,获得积分10
8秒前
8秒前
9秒前
瞄零完成签到,获得积分20
9秒前
Mocca完成签到,获得积分10
9秒前
西瓜完成签到 ,获得积分10
9秒前
阿西发布了新的文献求助10
9秒前
yy完成签到 ,获得积分10
10秒前
义气语儿完成签到,获得积分10
10秒前
酷波er应助潇洒的白猫采纳,获得10
11秒前
ZZ完成签到,获得积分10
11秒前
liu发布了新的文献求助10
11秒前
眯眯眼的衬衫应助ED采纳,获得200
12秒前
zumrat完成签到,获得积分20
12秒前
轻松的亦寒应助asiera采纳,获得50
12秒前
谷雨下完成签到,获得积分10
12秒前
stuffmatter发布了新的文献求助10
12秒前
乐乐应助孤独的珩采纳,获得10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954099
求助须知:如何正确求助?哪些是违规求助? 3500131
关于积分的说明 11098052
捐赠科研通 3230564
什么是DOI,文献DOI怎么找? 1786012
邀请新用户注册赠送积分活动 869802
科研通“疑难数据库(出版商)”最低求助积分说明 801594