Measuring latent combinational novelty of technology

新颖性 计算机科学 人工智能 组合逻辑 新知识检测 算法 神学 逻辑门 哲学
作者
Xiaoling Sun,Na Chen,Kun Ding
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:210: 118564-118564
标识
DOI:10.1016/j.eswa.2022.118564
摘要

• A measure is proposed to identify the combinational novelty of technology. • The measure shows better performance compared to single indicators using AI data. • High-novelty/high-conventional patents have a relatively higher future impact. Novelty is considered an important driving force of scientific and technological innovation. How to measure novelty has drawn much attention in recent years. The comprehensive measurement of the novelty could help to identify novel patents as soon as possible and reduce the risk of delayed identification of important technologies. This research introduces a comprehensive measure that could identify novel technology using IPC in patents from a knowledge combinational perspective. The existing methods for measuring novelty commonly use the co-occurrence of knowledge pairwise combinations and identify novelty by assessing the new pairings that did not exist. Besides considering the number of direct co-occurrence of knowledge combinations to evaluate novelty, the proposed method integrates indirect link probability and hierarchical similarity in the IPC tree structure. The feasibility of the measure is demonstrated by applying it to the patent data in the field of Artificial Intelligence (AI). Compared with previous measures, the proposed measure could capture the latent distance between knowledge pairings and identify more novel combinations. The relationship between novelty and citations in the AI field shows that: High-novelty/high-conventional patents have a higher average number of citations and a higher probability of being “hit” patents, indicating that novel patents build on prior knowledge have a relatively higher future impact.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助Bodhicia采纳,获得10
1秒前
奋斗大葡萄完成签到,获得积分10
1秒前
研友_8RyB3Z应助科研傻子采纳,获得10
1秒前
小小郭完成签到,获得积分10
2秒前
3秒前
LARS发布了新的文献求助10
5秒前
犇骉完成签到,获得积分10
5秒前
猜猜我是谁完成签到,获得积分10
5秒前
Capybara发布了新的文献求助10
6秒前
gty发布了新的文献求助10
6秒前
可爱半凡完成签到,获得积分10
6秒前
7秒前
任我行发布了新的文献求助10
7秒前
英俊的铭应助勤奋的灵松采纳,获得10
8秒前
9秒前
烫烫烫完成签到,获得积分10
10秒前
不安青牛应助科研通管家采纳,获得30
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
Ava应助孤岛飞鹰采纳,获得10
10秒前
10秒前
从容芮应助科研通管家采纳,获得10
10秒前
不安青牛应助科研通管家采纳,获得30
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
不安青牛应助科研通管家采纳,获得30
10秒前
天天快乐应助科研通管家采纳,获得10
10秒前
上官若男应助科研通管家采纳,获得10
11秒前
所所应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
Owen应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
周凡淇发布了新的文献求助10
11秒前
13秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158072
求助须知:如何正确求助?哪些是违规求助? 2809436
关于积分的说明 7881999
捐赠科研通 2467898
什么是DOI,文献DOI怎么找? 1313783
科研通“疑难数据库(出版商)”最低求助积分说明 630538
版权声明 601943