Efficient Combination of CNN and Transformer for Dual-Teacher Uncertainty-guided Semi-supervised Medical Image Segmentation

计算机科学 分割 人工智能 深度学习 变压器 图像分割 医学影像学 注释 机器学习 模式识别(心理学) 计算机视觉 量子力学 物理 电压
作者
Zhiyong Xiao,Yixin Su,Zhaohong Deng,Weidong Zhang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:226: 107099-107099 被引量:37
标识
DOI:10.1016/j.cmpb.2022.107099
摘要

Deep learning-based methods for fast target segmentation of magnetic resonance imaging (MRI) have become increasingly popular in recent years. Generally, the success of deep learning methods in medical image segmentation tasks relies on a large amount of labeled data. The time-consuming and labor-intensive problem of data annotation is a major challenge in medical image segmentation tasks. The aim of this work is to enhance the segmentation of MR images using a semi-supervised learning-based method using a small amount of labeled data and a large amount of unlabeled data.To utilize the effective information of the unlabeled data, we designed the method of guiding the Student segmentation model simultaneously by the Dual-Teacher structure of CNN and transformer forming the subject network. Both Teacher A and Student models are CNNs, and the TA-S module they form is a mean teacher structure with added data noise. In the TB-S module formed by the combination of Student and Teacher B models, their backbone networks CNN and transformer capture the local and global information of the image at the same time, respectively, to create pseudo labels for each other and perform cross-supervision. The Dual-Teacher guides the Student through synchronous training and performs knowledge rectification and communication with each other through consistent regular constraints, which better utilizes the valid information in the unlabeled data. In addition, the segmentation predictions of Teacher A and Student and Teacher A and Teacher B are screened for uncertainty assessment during the training process to enhance the prediction accuracy and generalization of the model. This method uses the mechanism of simultaneous training of the synthetic structure composed of TA-S and TB-S modules to jointly guide the optimization of the Student model to obtain better segmentation ability.We evaluated the proposed method on a publicly available MRI dataset from a cardiac segmentation competition organized by MICCAI in 2017. Compared with several existing state-of-the-art semi-supervised segmentation methods, the method achieves better segmentation results in terms of Dice coefficient and HD distance evaluation metrics of 0.878 and 4.9 mm and 0.886 and 5.0 mm, respectively, using a training set containing only 10% and 20% of labeled data.This method fuses CNN and transformer to design a new Teacher-Student semi-supervised learning optimization strategy, which greatly improves the utilization of a large number of unlabeled medical images and the effectiveness of model segmentation results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张大然完成签到 ,获得积分10
2秒前
科研小白完成签到 ,获得积分10
4秒前
和平使命应助研友_LOoomL采纳,获得10
7秒前
14秒前
鲤鱼安青完成签到 ,获得积分10
15秒前
18秒前
穆一手完成签到 ,获得积分10
31秒前
缺粥完成签到 ,获得积分10
32秒前
加油加油冲冲冲完成签到,获得积分10
32秒前
theo完成签到 ,获得积分10
39秒前
天才小能喵完成签到 ,获得积分0
39秒前
充电宝应助研友_LOoomL采纳,获得10
41秒前
Fx完成签到 ,获得积分10
53秒前
pink完成签到 ,获得积分10
54秒前
空曲完成签到 ,获得积分10
1分钟前
SH123完成签到 ,获得积分10
1分钟前
开心夏旋完成签到 ,获得积分10
1分钟前
晚晚完成签到 ,获得积分10
1分钟前
爆米花应助研友_LOoomL采纳,获得10
1分钟前
崩溃完成签到,获得积分10
1分钟前
俊逸的白梦完成签到 ,获得积分10
1分钟前
三十七度医完成签到,获得积分10
1分钟前
光亮若翠完成签到,获得积分10
1分钟前
Hubery完成签到 ,获得积分10
1分钟前
娇娇大王完成签到,获得积分10
1分钟前
海豚完成签到 ,获得积分10
1分钟前
纯真的梦竹完成签到,获得积分10
1分钟前
nicolaslcq完成签到,获得积分10
1分钟前
熊二完成签到,获得积分10
1分钟前
雅雅雅完成签到,获得积分10
1分钟前
Herbs完成签到 ,获得积分10
1分钟前
和平使命应助研友_LOoomL采纳,获得10
2分钟前
迅速的念芹完成签到 ,获得积分10
2分钟前
dragonhmw完成签到 ,获得积分10
2分钟前
Jonsnow完成签到 ,获得积分10
2分钟前
chenbin完成签到,获得积分10
2分钟前
jyy应助Doctor Gao采纳,获得10
2分钟前
2分钟前
李大宝完成签到 ,获得积分10
2分钟前
陈米花完成签到,获得积分10
2分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3224091
求助须知:如何正确求助?哪些是违规求助? 2872359
关于积分的说明 8179701
捐赠科研通 2539267
什么是DOI,文献DOI怎么找? 1371293
科研通“疑难数据库(出版商)”最低求助积分说明 646060
邀请新用户注册赠送积分活动 620055