DSSDPP: Data Selection and Sampling Based Domain Programming Predictor for Cross-Project Defect Prediction

计算机科学 分类器(UML) 参数统计 数据挖掘 选择(遗传算法) 判别式 领域(数学分析) 人工智能 机器学习 统计 数学 数学分析
作者
Zhiqiang Li,Hongyu Zhang,Xiao‐Yuan Jing,Juanying Xie,Min Guo,Jie Ren
出处
期刊:IEEE Transactions on Software Engineering [IEEE Computer Society]
卷期号:49 (4): 1941-1963 被引量:15
标识
DOI:10.1109/tse.2022.3204589
摘要

Cross-project defect prediction (CPDP) refers to recognizing defective software modules in one project (i.e., target) using historical data collected from other projects (i.e., source), which can help developers find defects and prioritize their testing efforts. Unfortunately, there often exists large distribution difference between the source and target data. Most CPDP methods neglect to select the appropriate source data for a given target at the project level. More importantly, existing CPDP models are parametric methods, which usually require intensive parameter selection and tuning to achieve better prediction performance. This would hinder wide applicability of CPDP in practice. Moreover, most CPDP methods do not address the cross-project class imbalance problem. These limitations lead to suboptimal CPDP results. In this paper, we propose a novel data selection and sampling based domain programming predictor (DSSDPP) for CPDP, which addresses the above limitations. DSSDPP is a non-parametric CPDP method, which can perform knowledge transfer across projects without the need for parameter selection and tuning. By exploiting the structures of source and target data, DSSDPP can learn a discriminative transfer classifier for identifying defects of the target project. Extensive experiments on 22 projects from four datasets indicate that DSSDPP achieves better MCC and AUC results against a range of competing methods both in the single-source and multi-source scenarios. Since DSSDPP is easy, effective, extensible, and efficient, we suggest that future work can use it with the well-chosen source data to conduct CPDP especially for the projects with limited computational budget.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瑶咕隆咚完成签到,获得积分10
1秒前
1秒前
迅速的衬衫完成签到,获得积分10
1秒前
心动完成签到,获得积分20
3秒前
共享精神应助杜阿拉阿拉采纳,获得10
3秒前
hxl发布了新的文献求助10
3秒前
yy应助苏苏采纳,获得10
5秒前
zzzzzzzzzzzzb发布了新的文献求助10
5秒前
5秒前
6秒前
7秒前
7秒前
海潮完成签到,获得积分10
8秒前
simpleblue发布了新的文献求助10
8秒前
酷波er应助lani采纳,获得10
9秒前
研友_VZG7GZ应助YJR采纳,获得10
9秒前
wddfz完成签到,获得积分10
9秒前
SciGPT应助pe采纳,获得10
10秒前
hxl完成签到,获得积分10
13秒前
科研通AI5应助badyoungboy采纳,获得10
13秒前
眼睛大的冰岚完成签到,获得积分10
13秒前
14秒前
Lucas应助zzzzzzzzzzzzb采纳,获得10
14秒前
ezekiet完成签到 ,获得积分10
16秒前
李健的小迷弟应助释金松采纳,获得10
16秒前
16秒前
meng发布了新的文献求助50
16秒前
dfghjkl发布了新的文献求助10
18秒前
20秒前
20秒前
21秒前
粉色完成签到,获得积分10
21秒前
22秒前
kxxs完成签到,获得积分10
22秒前
24秒前
sheneason完成签到,获得积分10
24秒前
Baneyhua完成签到,获得积分10
24秒前
lani发布了新的文献求助10
25秒前
badyoungboy发布了新的文献求助10
26秒前
27秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737788
求助须知:如何正确求助?哪些是违规求助? 3281410
关于积分的说明 10025130
捐赠科研通 2998123
什么是DOI,文献DOI怎么找? 1645087
邀请新用户注册赠送积分活动 782525
科研通“疑难数据库(出版商)”最低求助积分说明 749835