Intense infrared lasers for strong-field science

激光器 超短脉冲 高次谐波产生 阿秒 光电子学 光学 丝状化 材料科学 红外线的 飞秒 物理
作者
Zenghu Chang,Fang Li,Vladimir Fedorov,Chase Geiger,Shambhu Ghimire,Christian Heide,Nobuhisa Ishii,Jiro Itatani,Chandrashekhar Joshi,Yuki Kobayashi,Prabhat Kumar,Alphonse Marra,Sergey Mirov,Irina Petrushina,Mikhail Polyanskiy,David A. Reis,Sergei Tochitsky,Sergey Vasilyev,Lifeng Wang,Yi Wu
出处
期刊:Advances in Optics and Photonics [The Optical Society]
卷期号:14 (4): 652-652 被引量:50
标识
DOI:10.1364/aop.454797
摘要

The advent of chirped-pulse amplification in the 1980s and femtosecond Ti:sapphire lasers in the 1990s enabled transformative advances in intense laser–matter interaction physics. Whereas most of experiments have been conducted in the limited near-infrared range of 0.8–1 μm, theories predict that many physical phenomena such as high harmonic generation in gases favor long laser wavelengths in terms of extending the high-energy cutoff. Significant progress has been made in developing few-cycle, carrier-envelope phase-stabilized, high-peak-power lasers in the 1.6–2 μm range that has laid the foundation for attosecond X ray sources in the water window. Even longer wavelength lasers are becoming available that are suitable to study light filamentation, high harmonic generation, and laser–plasma interaction in the relativistic regime. Long-wavelength lasers are suitable for sub-bandgap strong-field excitation of a wide range of solid materials, including semiconductors. In the strong-field limit, bulk crystals also produce high-order harmonics. In this review, we first introduce several important wavelength scaling laws in strong-field physics, then describe recent breakthroughs in short- (1.4–3 μm), mid- (3–8 μm), and long-wave (8–15 μm) infrared laser technology, and finally provide examples of strong-field applications of these novel lasers. Some of the broadband ultrafast infrared lasers will have profound effects on medicine, environmental protection, and national defense, because their wavelengths cover the water absorption band, the molecular fingerprint region, as well as the atmospheric infrared transparent window.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助Gong采纳,获得10
刚刚
鱼中屿发布了新的文献求助10
2秒前
寻道图强给GPTea的求助进行了留言
2秒前
啊啊啊啊啊完成签到 ,获得积分10
2秒前
3秒前
wangting完成签到,获得积分10
3秒前
8R60d8应助毛竹采纳,获得10
4秒前
Zhoey完成签到,获得积分10
4秒前
嘿嘿发布了新的文献求助10
5秒前
6秒前
俭朴的芝麻完成签到,获得积分10
6秒前
7秒前
9秒前
西柚完成签到 ,获得积分10
10秒前
香蕉觅云应助安静的老师采纳,获得10
11秒前
11秒前
11秒前
xxfsx应助Vi采纳,获得10
12秒前
gkfenomeno发布了新的文献求助20
12秒前
大白发布了新的文献求助10
13秒前
大个应助守护星星采纳,获得10
14秒前
123465完成签到,获得积分10
14秒前
8R60d8应助r93527005采纳,获得10
14秒前
打烊完成签到 ,获得积分10
14秒前
愉快数据线完成签到 ,获得积分10
15秒前
清禾kat完成签到,获得积分10
15秒前
15秒前
17秒前
edtaa发布了新的文献求助10
18秒前
bkagyin应助春游小熊采纳,获得10
19秒前
qtr发布了新的文献求助10
19秒前
19秒前
咖啡发布了新的文献求助10
20秒前
jinyuqian完成签到,获得积分10
21秒前
21秒前
21秒前
小二郎应助echo采纳,获得10
23秒前
朴素鸡发布了新的文献求助10
23秒前
24秒前
yantianliang发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5490238
求助须知:如何正确求助?哪些是违规求助? 4588884
关于积分的说明 14421740
捐赠科研通 4520754
什么是DOI,文献DOI怎么找? 2476836
邀请新用户注册赠送积分活动 1462333
关于科研通互助平台的介绍 1435222