A Metabolism-Related Gene Prognostic Index for Prediction of Response to Immunotherapy in Lung Adenocarcinoma

免疫疗法 基因 免疫系统 生物 癌症研究 腺癌 肺癌 生存分析 计算生物学 肿瘤科 医学 癌症 免疫学 内科学 遗传学
作者
Bo Tang,Lanlin Hu,Tao Jiang,Yunchang Li,Huasheng Xu,Hang Zhou,Lan Mei,Ke Xu,Jun Yin,Chunxia Su,Caicun Zhou,Chuan Xu
出处
期刊:International Journal of Molecular Sciences [MDPI AG]
卷期号:23 (20): 12143-12143 被引量:6
标识
DOI:10.3390/ijms232012143
摘要

Immunotherapy, such as immune checkpoint inhibitors (ICIs), is a validated strategy for treating lung adenocarcinoma (LUAD) patients. One of the main challenges in ICIs treatment is the lack of efficient biomarkers for predicting response or resistance. Metabolic reprogramming has been proven to remodel the tumor microenvironment, altering the response to ICIs. We constructed a prognostic model as metabolism-related gene (MRG) of four genes by using weighted gene co-expression network analysis (WGCNA), the nonnegative matrix factorization (NMF), and Cox regression analysis of a LUAD dataset (n = 500) from The Cancer Genome Atlas (TCGA), which was validated with three Gene Expression Omnibus (GEO) datasets (n = 442, n = 226 and n = 127). The MRG was constructed based on BIRC5, PLK1, CDKN3, and CYP4B1 genes. MRG-high patients had a worse survival probability than MRG-low patients. Furthermore, the MRG-high subgroup was more associated with cell cycle-related pathways; high infiltration of activated memory CD4+T cells, M0 macrophages, and neutrophils; and showed better response to ICIs. Contrarily, the MRG-low subgroup was associated with fatty acid metabolism, high infiltration of dendric cells, and resting mast cells, and showed poor response to ICIs. MRG is a promising prognostic index for predicting survival and response to ICIs and other therapeutic agents in LUAD, which might provide insights on strategies with ICIs alone or combined with other agents.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
滴迪氐媂完成签到 ,获得积分10
6秒前
研友_08o2yZ完成签到,获得积分10
13秒前
月亮发布了新的文献求助10
15秒前
达雨应助Tal采纳,获得10
18秒前
紧张的眼睛完成签到 ,获得积分10
19秒前
jjjjchou完成签到,获得积分10
21秒前
21秒前
蔺景轩完成签到 ,获得积分10
23秒前
23秒前
CNAxiaozhu7应助quasar采纳,获得10
24秒前
muky完成签到,获得积分10
24秒前
墨染发布了新的文献求助10
25秒前
大方夏瑶完成签到,获得积分10
35秒前
37秒前
科研通AI6应助Xjx6519采纳,获得10
38秒前
嘻哈师徒完成签到,获得积分10
39秒前
达雨应助Tal采纳,获得10
40秒前
41秒前
小左完成签到 ,获得积分10
41秒前
外翎发布了新的文献求助10
42秒前
嘻哈师徒发布了新的文献求助10
42秒前
顾矜应助bai采纳,获得10
43秒前
Barry完成签到,获得积分10
48秒前
49秒前
Jodie发布了新的文献求助10
50秒前
52秒前
依楼发布了新的文献求助10
53秒前
ding应助Jodie采纳,获得10
55秒前
所所应助冷酷严青采纳,获得10
59秒前
依楼完成签到,获得积分10
59秒前
达雨应助Tal采纳,获得10
1分钟前
1分钟前
1分钟前
hcxhch发布了新的文献求助10
1分钟前
xiaofenzi发布了新的文献求助10
1分钟前
1分钟前
浮游应助眼睛大花生采纳,获得10
1分钟前
wanci应助临泉采纳,获得10
1分钟前
根号3完成签到 ,获得积分10
1分钟前
欢喜的跳跳糖完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557589
求助须知:如何正确求助?哪些是违规求助? 4642695
关于积分的说明 14668834
捐赠科研通 4584089
什么是DOI,文献DOI怎么找? 2514585
邀请新用户注册赠送积分活动 1488838
关于科研通互助平台的介绍 1459523