A Metabolism-Related Gene Prognostic Index for Prediction of Response to Immunotherapy in Lung Adenocarcinoma

免疫疗法 基因 免疫系统 生物 癌症研究 腺癌 肺癌 生存分析 计算生物学 肿瘤科 医学 癌症 免疫学 内科学 遗传学
作者
Bo Tang,Lanlin Hu,Tao Jiang,Yunchang Li,Huasheng Xu,Hang Zhou,Lan Mei,Ke Xu,Jun Yin,Chunxia Su,Caicun Zhou,Chuan Xu
出处
期刊:International Journal of Molecular Sciences [MDPI AG]
卷期号:23 (20): 12143-12143 被引量:6
标识
DOI:10.3390/ijms232012143
摘要

Immunotherapy, such as immune checkpoint inhibitors (ICIs), is a validated strategy for treating lung adenocarcinoma (LUAD) patients. One of the main challenges in ICIs treatment is the lack of efficient biomarkers for predicting response or resistance. Metabolic reprogramming has been proven to remodel the tumor microenvironment, altering the response to ICIs. We constructed a prognostic model as metabolism-related gene (MRG) of four genes by using weighted gene co-expression network analysis (WGCNA), the nonnegative matrix factorization (NMF), and Cox regression analysis of a LUAD dataset (n = 500) from The Cancer Genome Atlas (TCGA), which was validated with three Gene Expression Omnibus (GEO) datasets (n = 442, n = 226 and n = 127). The MRG was constructed based on BIRC5, PLK1, CDKN3, and CYP4B1 genes. MRG-high patients had a worse survival probability than MRG-low patients. Furthermore, the MRG-high subgroup was more associated with cell cycle-related pathways; high infiltration of activated memory CD4+T cells, M0 macrophages, and neutrophils; and showed better response to ICIs. Contrarily, the MRG-low subgroup was associated with fatty acid metabolism, high infiltration of dendric cells, and resting mast cells, and showed poor response to ICIs. MRG is a promising prognostic index for predicting survival and response to ICIs and other therapeutic agents in LUAD, which might provide insights on strategies with ICIs alone or combined with other agents.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
hanli发布了新的文献求助10
1秒前
know完成签到,获得积分10
1秒前
2秒前
2秒前
qq糖发布了新的文献求助10
2秒前
香香香完成签到,获得积分10
2秒前
顺心凡之完成签到,获得积分10
2秒前
3秒前
乐观小蕊发布了新的文献求助10
3秒前
4秒前
无花果应助lucinda采纳,获得10
4秒前
coco完成签到,获得积分10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
1111应助科研通管家采纳,获得10
5秒前
QLLW应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
1111应助科研通管家采纳,获得10
6秒前
1111应助科研通管家采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
6秒前
嘿嘿应助科研通管家采纳,获得30
6秒前
1111应助科研通管家采纳,获得10
6秒前
1111应助科研通管家采纳,获得10
6秒前
香香香发布了新的文献求助10
6秒前
6秒前
7秒前
汉堡包应助猪猪hero采纳,获得30
7秒前
瑞_发布了新的文献求助10
8秒前
9秒前
可爱的函函应助檬沫熙采纳,获得10
10秒前
10秒前
愉快的老三完成签到,获得积分10
11秒前
科目三应助ERIS采纳,获得10
11秒前
Ricky完成签到,获得积分10
11秒前
11秒前
Lzj666发布了新的文献求助10
12秒前
天真安筠发布了新的文献求助10
12秒前
小木完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
浮游应助morena采纳,获得10
15秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620874
求助须知:如何正确求助?哪些是违规求助? 4705521
关于积分的说明 14932362
捐赠科研通 4763666
什么是DOI,文献DOI怎么找? 2551356
邀请新用户注册赠送积分活动 1513817
关于科研通互助平台的介绍 1474715