Ad avoidance in the digital context: A systematic literature review and research agenda

背景(考古学) 科学文献 心理学 系统回顾 知识管理 营销 计算机科学 业务 政治学 梅德林 法学 古生物学 生物
作者
Fatih Çelik,Mehmet Safa Çam,Mehmet Ali Köseoğlu
出处
期刊:International Journal of Consumer Studies [Wiley]
卷期号:47 (6): 2071-2105 被引量:7
标识
DOI:10.1111/ijcs.12882
摘要

Abstract The recent growth in digital marketing investments and revenues has attracted the attention of both marketing practitioners and scholars. However, this growth has dramatically increased users' exposure to ad messages, encouraging consumers to avoid them. Therefore, ad avoidance has become a major problem for marketing practitioners. Although researchers have become much more interested in this subject over the past two decades, the body of knowledge on ad avoidance in the digital environment remains fragmented due to the lack of a comprehensive review. Therefore, a holistic overview study is needed that focuses on the big picture and can help researchers to understand the literature comprehensively. This study aims to provide a comprehensive understanding of the topic using a systematic literature review approach on digital ad avoidance. To this end, we provide an in‐depth content analysis of 56 relevant articles published in 31 peer‐reviewed scientific journals up to December 31, 2021. Based on a theories, contexts, characteristics, and methods (TCCM) framework, the study results shed light on ‘what do we know, how do we know, and where should research about digital ad avoidance research be heading?’ Additionally, drawing on the content analysis, we have presented an integrative framework that considers antecedents, outcomes, mediators, and moderators, which can help develop the field systematically and guide future research. By doing so, we think this review meets the need to give an overview of the state‐of‐the‐art scientific body of knowledge on digital ad avoidance and makes important and solid contributions to the literature, practical implications, and future research directions based on the findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风萧零落完成签到,获得积分10
1秒前
1秒前
rhrhn完成签到,获得积分10
2秒前
wwqdd发布了新的文献求助10
2秒前
Re完成签到,获得积分10
3秒前
秀丽的香旋完成签到,获得积分10
3秒前
3秒前
愉快的真完成签到,获得积分0
4秒前
4秒前
简单完成签到,获得积分10
4秒前
炫炫炫发布了新的文献求助10
5秒前
5秒前
共享精神应助tesla采纳,获得10
6秒前
6秒前
6秒前
8秒前
9秒前
9秒前
9秒前
kx完成签到,获得积分10
10秒前
言十发布了新的文献求助10
10秒前
10秒前
AXEDW完成签到,获得积分10
10秒前
10秒前
11秒前
Miss_Q完成签到 ,获得积分10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
pluto应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
11秒前
Owen应助科研通管家采纳,获得50
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
Majician发布了新的文献求助10
12秒前
Jason应助科研通管家采纳,获得20
12秒前
华仔应助科研通管家采纳,获得10
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
元谷雪发布了新的文献求助10
12秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3557704
求助须知:如何正确求助?哪些是违规求助? 3132800
关于积分的说明 9399266
捐赠科研通 2832918
什么是DOI,文献DOI怎么找? 1557150
邀请新用户注册赠送积分活动 727095
科研通“疑难数据库(出版商)”最低求助积分说明 716191