已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Rice plant disease classification using dilated convolutional neural network with global average pooling

卷积神经网络 人工智能 过度拟合 计算机科学 深度学习 联营 机器学习 特征提取 人工神经网络 模式识别(心理学)
作者
S Senthil Pandi,A Senthilselvi,J Gitanjali,K ArivuSelvan,Jagadeesh Gopal,J Vellingiri
出处
期刊:Ecological Modelling [Elsevier]
卷期号:474: 110166-110166
标识
DOI:10.1016/j.ecolmodel.2022.110166
摘要

• Learning-based algorithms in plant leaf disease recognition can help to avoid the drawbacks of artificially selecting disease spot features, increase the objectivity of plant leaf disease feature extraction, and speed up the research. • DCNN (Dilated Convolutional Neural Network) model with Global Average Pooling (GAP) will be constructed by changing regular CNN convolution kernels with dilated convolution kernels and the fully connected layer in traditional CNN replaced by Global Average Pooling. • Traditional CNN has the issue of using up too much computational power. • Dilated convolution gives the advantages of less computational cost and reduced memory usage then GAP avoids overfitting. The Indian economy is thought to be primarily dependent on agriculture. In plants with various climatic circumstances, illness is highly prevalent and natural. As a result, the quality of crop deteriorates. Getting the best quality and quantity of harvest is farmers' most challenging task due to recent changes in weather cycles. Crop diseases must be identified and prevented as soon as possible to improve productivity. Deep learning is an artificial intelligence branch. It has been actively discussed in academic and industrial circles in recent days, because of the advantages of autonomous learning and feature extraction. The use of learning-based algorithms in plant leaf disease recognition can help to strengthen the objectivity of plant leaf disease feature extraction, minimize the limitations of intentionally selecting disease spot features, and speed up the study. In this paper, we examine existing approaches to detecting plant leaf disease using deep learning and high-end imaging methods, as well as their challenges. We anticipate that our research will be useful to researchers interested in plant disease identification. The traditional CNN has the issue of using up too much computational power. To address this issue, this research developed a DCNN (Dilated Convolutional Neural Network) model with Global Average Pooling (GAP), which will be constructed by changing regular CNN convolution kernels with dilated convolution kernels and the fully connected layer in traditional CNN replaced by Global Average Pooling. The dilated convolution gives the advantages of less computational cost and reduced memory usage then GAP avoids overfitting. These two new concepts are implemented with CNN and the results of this method is compared with other learning and hybrid learning methods using performance metric such as precision, recall, f1-score and accuracy. The classification includes four classes such as bacterial blight, blast, brown spot and turgo. The performance metrics shows that, in the same experimental setup, the DCNN model with GAP improves training accuracy by 5.49 percent on average, compared to the classic CNN model and the results are compared with other learning and hybrid learning methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谦让问兰完成签到 ,获得积分10
2秒前
赘婿应助简单寻冬采纳,获得10
3秒前
星星完成签到 ,获得积分10
6秒前
15秒前
加油杨完成签到 ,获得积分10
15秒前
三十六完成签到 ,获得积分10
16秒前
17秒前
搜集达人应助Rachel采纳,获得10
19秒前
hahaha完成签到,获得积分20
23秒前
科研通AI6应助猪猫的主人采纳,获得10
25秒前
兜里没糖了完成签到 ,获得积分0
25秒前
北克完成签到 ,获得积分10
27秒前
CipherSage应助朴实的南露采纳,获得10
27秒前
南宫硕完成签到 ,获得积分10
28秒前
28秒前
fyjlfy完成签到 ,获得积分10
29秒前
loser完成签到 ,获得积分10
29秒前
bgt完成签到 ,获得积分10
32秒前
youngyang完成签到 ,获得积分10
32秒前
月亮完成签到,获得积分10
34秒前
kitiker发布了新的文献求助10
34秒前
ShmilyLJQ完成签到,获得积分10
35秒前
zhz完成签到,获得积分10
35秒前
ABLAT发布了新的文献求助10
36秒前
38秒前
ccm发布了新的文献求助10
41秒前
土豆炖牛腩应助ABLAT采纳,获得10
45秒前
zeice完成签到 ,获得积分10
46秒前
48秒前
52秒前
教生物的杨教授完成签到,获得积分10
52秒前
笑笑完成签到 ,获得积分10
54秒前
研友_Lmeg7L发布了新的文献求助10
55秒前
在水一方应助CherIsh采纳,获得30
56秒前
落樱幻梦染星尘完成签到,获得积分10
57秒前
57秒前
zhz发布了新的文献求助10
58秒前
无名子完成签到 ,获得积分10
58秒前
59秒前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634450
求助须知:如何正确求助?哪些是违规求助? 4731146
关于积分的说明 14988498
捐赠科研通 4792224
什么是DOI,文献DOI怎么找? 2559401
邀请新用户注册赠送积分活动 1519677
关于科研通互助平台的介绍 1479851