Rice plant disease classification using dilated convolutional neural network with global average pooling

卷积神经网络 人工智能 过度拟合 计算机科学 深度学习 联营 机器学习 特征提取 人工神经网络 模式识别(心理学)
作者
S Senthil Pandi,A Senthilselvi,J Gitanjali,K ArivuSelvan,Jagadeesh Gopal,J Vellingiri
出处
期刊:Ecological Modelling [Elsevier BV]
卷期号:474: 110166-110166
标识
DOI:10.1016/j.ecolmodel.2022.110166
摘要

• Learning-based algorithms in plant leaf disease recognition can help to avoid the drawbacks of artificially selecting disease spot features, increase the objectivity of plant leaf disease feature extraction, and speed up the research. • DCNN (Dilated Convolutional Neural Network) model with Global Average Pooling (GAP) will be constructed by changing regular CNN convolution kernels with dilated convolution kernels and the fully connected layer in traditional CNN replaced by Global Average Pooling. • Traditional CNN has the issue of using up too much computational power. • Dilated convolution gives the advantages of less computational cost and reduced memory usage then GAP avoids overfitting. The Indian economy is thought to be primarily dependent on agriculture. In plants with various climatic circumstances, illness is highly prevalent and natural. As a result, the quality of crop deteriorates. Getting the best quality and quantity of harvest is farmers' most challenging task due to recent changes in weather cycles. Crop diseases must be identified and prevented as soon as possible to improve productivity. Deep learning is an artificial intelligence branch. It has been actively discussed in academic and industrial circles in recent days, because of the advantages of autonomous learning and feature extraction. The use of learning-based algorithms in plant leaf disease recognition can help to strengthen the objectivity of plant leaf disease feature extraction, minimize the limitations of intentionally selecting disease spot features, and speed up the study. In this paper, we examine existing approaches to detecting plant leaf disease using deep learning and high-end imaging methods, as well as their challenges. We anticipate that our research will be useful to researchers interested in plant disease identification. The traditional CNN has the issue of using up too much computational power. To address this issue, this research developed a DCNN (Dilated Convolutional Neural Network) model with Global Average Pooling (GAP), which will be constructed by changing regular CNN convolution kernels with dilated convolution kernels and the fully connected layer in traditional CNN replaced by Global Average Pooling. The dilated convolution gives the advantages of less computational cost and reduced memory usage then GAP avoids overfitting. These two new concepts are implemented with CNN and the results of this method is compared with other learning and hybrid learning methods using performance metric such as precision, recall, f1-score and accuracy. The classification includes four classes such as bacterial blight, blast, brown spot and turgo. The performance metrics shows that, in the same experimental setup, the DCNN model with GAP improves training accuracy by 5.49 percent on average, compared to the classic CNN model and the results are compared with other learning and hybrid learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
勤劳溪灵完成签到,获得积分10
刚刚
刚刚
夏姬宁静发布了新的文献求助10
1秒前
情怀应助无所吊谓采纳,获得10
1秒前
Active完成签到,获得积分10
1秒前
scholars完成签到,获得积分10
2秒前
ohno耶耶耶发布了新的文献求助10
3秒前
SweetyANN发布了新的文献求助10
3秒前
3秒前
niceweiwei发布了新的文献求助10
4秒前
ZG发布了新的文献求助10
4秒前
4秒前
迷路安雁完成签到,获得积分10
5秒前
5秒前
yuery完成签到,获得积分10
5秒前
牛牛牛完成签到,获得积分10
5秒前
A1len完成签到,获得积分10
6秒前
爱写论文的小胡完成签到,获得积分10
6秒前
拉长的问晴完成签到,获得积分10
7秒前
Yukikig完成签到,获得积分10
7秒前
哈哈哈哈哈完成签到,获得积分10
7秒前
tofms完成签到,获得积分10
7秒前
没有蛀牙发布了新的文献求助10
7秒前
Starain完成签到,获得积分10
7秒前
WW完成签到,获得积分10
8秒前
8秒前
8秒前
zhengke924完成签到,获得积分10
9秒前
aaaaa完成签到,获得积分10
9秒前
GERRARD完成签到,获得积分10
9秒前
yuery发布了新的文献求助10
9秒前
街道办事部完成签到,获得积分10
9秒前
我是老大应助懿甜采纳,获得10
10秒前
牛牛牛发布了新的文献求助10
11秒前
OMR123完成签到,获得积分10
11秒前
CZF完成签到 ,获得积分10
11秒前
12秒前
CipherSage应助夏姬宁静采纳,获得10
12秒前
机智访琴完成签到,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950088
求助须知:如何正确求助?哪些是违规求助? 3495545
关于积分的说明 11077625
捐赠科研通 3226040
什么是DOI,文献DOI怎么找? 1783457
邀请新用户注册赠送积分活动 867687
科研通“疑难数据库(出版商)”最低求助积分说明 800874