亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Rice plant disease classification using dilated convolutional neural network with global average pooling

卷积神经网络 人工智能 过度拟合 计算机科学 深度学习 联营 机器学习 特征提取 人工神经网络 模式识别(心理学)
作者
S Senthil Pandi,A Senthilselvi,J Gitanjali,K ArivuSelvan,Jagadeesh Gopal,J Vellingiri
出处
期刊:Ecological Modelling [Elsevier BV]
卷期号:474: 110166-110166
标识
DOI:10.1016/j.ecolmodel.2022.110166
摘要

• Learning-based algorithms in plant leaf disease recognition can help to avoid the drawbacks of artificially selecting disease spot features, increase the objectivity of plant leaf disease feature extraction, and speed up the research. • DCNN (Dilated Convolutional Neural Network) model with Global Average Pooling (GAP) will be constructed by changing regular CNN convolution kernels with dilated convolution kernels and the fully connected layer in traditional CNN replaced by Global Average Pooling. • Traditional CNN has the issue of using up too much computational power. • Dilated convolution gives the advantages of less computational cost and reduced memory usage then GAP avoids overfitting. The Indian economy is thought to be primarily dependent on agriculture. In plants with various climatic circumstances, illness is highly prevalent and natural. As a result, the quality of crop deteriorates. Getting the best quality and quantity of harvest is farmers' most challenging task due to recent changes in weather cycles. Crop diseases must be identified and prevented as soon as possible to improve productivity. Deep learning is an artificial intelligence branch. It has been actively discussed in academic and industrial circles in recent days, because of the advantages of autonomous learning and feature extraction. The use of learning-based algorithms in plant leaf disease recognition can help to strengthen the objectivity of plant leaf disease feature extraction, minimize the limitations of intentionally selecting disease spot features, and speed up the study. In this paper, we examine existing approaches to detecting plant leaf disease using deep learning and high-end imaging methods, as well as their challenges. We anticipate that our research will be useful to researchers interested in plant disease identification. The traditional CNN has the issue of using up too much computational power. To address this issue, this research developed a DCNN (Dilated Convolutional Neural Network) model with Global Average Pooling (GAP), which will be constructed by changing regular CNN convolution kernels with dilated convolution kernels and the fully connected layer in traditional CNN replaced by Global Average Pooling. The dilated convolution gives the advantages of less computational cost and reduced memory usage then GAP avoids overfitting. These two new concepts are implemented with CNN and the results of this method is compared with other learning and hybrid learning methods using performance metric such as precision, recall, f1-score and accuracy. The classification includes four classes such as bacterial blight, blast, brown spot and turgo. The performance metrics shows that, in the same experimental setup, the DCNN model with GAP improves training accuracy by 5.49 percent on average, compared to the classic CNN model and the results are compared with other learning and hybrid learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
38秒前
不羁发布了新的文献求助10
42秒前
43秒前
量子星尘发布了新的文献求助10
48秒前
56秒前
56秒前
清脆的飞丹完成签到,获得积分10
1分钟前
沉静的安青完成签到,获得积分10
1分钟前
yangbohhan发布了新的文献求助10
1分钟前
bkagyin应助三口一头猪采纳,获得10
1分钟前
JrPaleo101完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
热心愫发布了新的文献求助30
2分钟前
苏震坤发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
热心愫完成签到,获得积分20
4分钟前
4分钟前
4分钟前
爱弥儿发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
快乐小狗完成签到 ,获得积分10
4分钟前
5分钟前
菠萝发布了新的文献求助10
5分钟前
满意的伊完成签到,获得积分10
5分钟前
ttxxcdx完成签到 ,获得积分10
5分钟前
越野完成签到 ,获得积分10
5分钟前
5分钟前
wanci应助yangbohhan采纳,获得10
5分钟前
苏震坤发布了新的文献求助10
5分钟前
5分钟前
yindi1991完成签到 ,获得积分10
6分钟前
yangbohhan发布了新的文献求助10
6分钟前
丘比特应助yangbo666采纳,获得10
6分钟前
可爱的函函应助cc采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
赘婿应助PPD采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4611456
求助须知:如何正确求助?哪些是违规求助? 4016969
关于积分的说明 12435954
捐赠科研通 3698871
什么是DOI,文献DOI怎么找? 2039823
邀请新用户注册赠送积分活动 1072572
科研通“疑难数据库(出版商)”最低求助积分说明 956270