Protein folding problem: enigma, paradox, solution

膜生物学 折叠(DSP实现) 蛋白质折叠 化学 计算生物学 生物物理学 生物化学 生物 工程类 电气工程
作者
Alexei V. Finkelstein,Natalya S. Bogatyreva,Dmitry N. Ivankov,Sergiy O. Garbuzynskiy
出处
期刊:Biophysical Reviews [Springer Nature]
卷期号:14 (6): 1255-1272 被引量:20
标识
DOI:10.1007/s12551-022-01000-1
摘要

The ability of protein chains to spontaneously form their three-dimensional structures is a long-standing mystery in molecular biology. The most conceptual aspect of this mystery is how the protein chain can find its native, "working" spatial structure (which, for not too big protein chains, corresponds to the global free energy minimum) in a biologically reasonable time, without exhaustive enumeration of all possible conformations, which would take billions of years. This is the so-called "Levinthal's paradox." In this review, we discuss the key ideas and discoveries leading to the current understanding of protein folding kinetics, including folding landscapes and funnels, free energy barriers at the folding/unfolding pathways, and the solution of Levinthal's paradox. A special role here is played by the "all-or-none" phase transition occurring at protein folding and unfolding and by the point of thermodynamic (and kinetic) equilibrium between the "native" and the "unfolded" phases of the protein chain (where the theory obtains the simplest form). The modern theory provides an understanding of key features of protein folding and, in good agreement with experiments, it (i) outlines the chain length-dependent range of protein folding times, (ii) predicts the observed maximal size of "foldable" proteins and domains. Besides, it predicts the maximal size of proteins and domains that fold under solely thermodynamic (rather than kinetic) control. Complementarily, a theoretical analysis of the number of possible protein folding patterns, performed at the level of formation and assembly of secondary structures, correctly outlines the upper limit of protein folding times.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助芭蕾恰恰舞采纳,获得30
1秒前
CodeCraft应助99668采纳,获得10
1秒前
细心书包发布了新的文献求助10
2秒前
单薄枕头完成签到,获得积分20
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
量子星尘发布了新的文献求助30
4秒前
5秒前
蔡蔡蔡发布了新的文献求助10
5秒前
6秒前
李健的小迷弟应助鲸鱼采纳,获得10
6秒前
7秒前
7秒前
田様应助潇洒闭月采纳,获得10
7秒前
我是老大应助PhDL1采纳,获得10
8秒前
顺意发布了新的文献求助10
8秒前
义气凝阳发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
RONG发布了新的文献求助10
10秒前
10秒前
共享精神应助huangsi采纳,获得10
11秒前
Journey发布了新的文献求助10
12秒前
wyd222发布了新的文献求助10
12秒前
12秒前
13秒前
14秒前
14秒前
14秒前
完美世界应助aulinwl采纳,获得30
14秒前
lily发布了新的文献求助10
16秒前
16秒前
16秒前
YuZhang发布了新的文献求助10
17秒前
sssaasa发布了新的文献求助10
17秒前
wxy完成签到,获得积分10
17秒前
18秒前
香蕉觅云应助淡淡夕阳采纳,获得10
18秒前
鲸鱼发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5762020
求助须知:如何正确求助?哪些是违规求助? 5533545
关于积分的说明 15401764
捐赠科研通 4898295
什么是DOI,文献DOI怎么找? 2634801
邀请新用户注册赠送积分活动 1582925
关于科研通互助平台的介绍 1538165