Protein folding problem: enigma, paradox, solution

膜生物学 折叠(DSP实现) 蛋白质折叠 化学 计算生物学 生物物理学 生物化学 生物 工程类 电气工程
作者
Alexei V. Finkelstein,Natalya S. Bogatyreva,Dmitry N. Ivankov,Sergiy O. Garbuzynskiy
出处
期刊:Biophysical Reviews [Springer Nature]
卷期号:14 (6): 1255-1272 被引量:20
标识
DOI:10.1007/s12551-022-01000-1
摘要

The ability of protein chains to spontaneously form their three-dimensional structures is a long-standing mystery in molecular biology. The most conceptual aspect of this mystery is how the protein chain can find its native, "working" spatial structure (which, for not too big protein chains, corresponds to the global free energy minimum) in a biologically reasonable time, without exhaustive enumeration of all possible conformations, which would take billions of years. This is the so-called "Levinthal's paradox." In this review, we discuss the key ideas and discoveries leading to the current understanding of protein folding kinetics, including folding landscapes and funnels, free energy barriers at the folding/unfolding pathways, and the solution of Levinthal's paradox. A special role here is played by the "all-or-none" phase transition occurring at protein folding and unfolding and by the point of thermodynamic (and kinetic) equilibrium between the "native" and the "unfolded" phases of the protein chain (where the theory obtains the simplest form). The modern theory provides an understanding of key features of protein folding and, in good agreement with experiments, it (i) outlines the chain length-dependent range of protein folding times, (ii) predicts the observed maximal size of "foldable" proteins and domains. Besides, it predicts the maximal size of proteins and domains that fold under solely thermodynamic (rather than kinetic) control. Complementarily, a theoretical analysis of the number of possible protein folding patterns, performed at the level of formation and assembly of secondary structures, correctly outlines the upper limit of protein folding times.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助贰什柒采纳,获得10
刚刚
研友_Zr2mxZ完成签到,获得积分10
刚刚
小九九完成签到 ,获得积分20
刚刚
风趣安青发布了新的文献求助10
1秒前
ding应助生动靖柔采纳,获得10
1秒前
领导范儿应助不得采纳,获得10
1秒前
cici完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
科研通AI6应助微笑采纳,获得10
3秒前
3秒前
Tanya47应助陶醉凝丝采纳,获得10
3秒前
清风完成签到 ,获得积分10
3秒前
3秒前
小黑仙儿完成签到,获得积分10
4秒前
阿雷发布了新的文献求助10
4秒前
Melan发布了新的文献求助10
5秒前
5秒前
郑方形发布了新的文献求助10
5秒前
5秒前
远航发布了新的文献求助10
5秒前
BH发布了新的文献求助10
5秒前
miao3718完成签到 ,获得积分10
5秒前
7秒前
Echo发布了新的文献求助10
7秒前
L1发布了新的文献求助10
7秒前
小杜在此发布了新的文献求助10
7秒前
LIDD完成签到,获得积分10
7秒前
发嗲的鸡发布了新的文献求助10
8秒前
mhr发布了新的文献求助10
9秒前
9秒前
科目三应助zuoym采纳,获得10
9秒前
9秒前
今后应助sansan采纳,获得10
9秒前
IIIris发布了新的文献求助10
9秒前
KFC代吃完成签到,获得积分10
10秒前
xm102322应助小小志采纳,获得20
10秒前
juzitinghai完成签到,获得积分10
11秒前
淡然夏天发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660809
求助须知:如何正确求助?哪些是违规求助? 4835652
关于积分的说明 15091990
捐赠科研通 4819406
什么是DOI,文献DOI怎么找? 2579257
邀请新用户注册赠送积分活动 1533773
关于科研通互助平台的介绍 1492565