密度泛函理论
航程(航空)
统计物理学
球体
离子
硬球
蒙特卡罗方法
电荷(物理)
物理
度量(数据仓库)
能量泛函
轨道自由密度泛函理论
职位(财务)
功能(生物学)
电荷密度
功能理论
量子力学
混合功能
材料科学
数学
计算机科学
统计
财务
天文
数据库
进化生物学
经济
复合材料
生物
作者
Roland Roth,Dirk Gillespie
标识
DOI:10.1088/0953-8984/28/24/244006
摘要
A functional for the electrostatic excess free-energy for charged, hard sphere fluids is proposed. The functional is derived from two complementary, but equivalent, interpretations of the mean spherical approximation (MSA). The first combines fundamental measure theory (FMT) from hard-core interactions with the idea that MSA can be interpreted in terms of the interaction spherical shells of charge. This formulation gives the free-energy density as a function of weighted densities. When all the ions have the same size, the functional adopts an FMT-like form. The second in effect 'functionalizes' the derivation of MSA; that is, it generalizes the MSA as a functional-based version of MSA (fMSA). This formulation defines the free-energy density as a function of a position-dependent MSA screening parameter and the weighted densities of the FMT approach. This FMT/fMSA functional is shown to give accurate density profiles, as compared to Monte Carlo simulations, under a wide range of ion concentrations, size asymmetries, and valences.
科研通智能强力驱动
Strongly Powered by AbleSci AI