Spatial Segmentation of Imaging Mass Spectrometry Data with Edge-Preserving Image Denoising and Clustering

人工智能 分割 聚类分析 模式识别(心理学) 计算机科学 质谱成像 像素 空间分析 计算机视觉 图像分割 数学 质谱法 化学 色谱法 统计
作者
Theodore Alexandrov,Michael Becker,Sören‐Oliver Deininger,Günther Ernst,Liane Wehder,Markus Grasmair,Ferdinand von Eggeling,Herbert Thiele,Peter Maaß
出处
期刊:Journal of Proteome Research [American Chemical Society]
卷期号:9 (12): 6535-6546 被引量:184
标识
DOI:10.1021/pr100734z
摘要

In recent years, matrix-assisted laser desorption/ionization (MALDI)-imaging mass spectrometry has become a mature technology, allowing for reproducible high-resolution measurements to localize proteins and smaller molecules. However, despite this impressive technological advance, only a few papers have been published concerned with computational methods for MALDI-imaging data. We address this issue proposing a new procedure for spatial segmentation of MALDI-imaging data sets. This procedure clusters all spectra into different groups based on their similarity. This partition is represented by a segmentation map, which helps to understand the spatial structure of the sample. The core of our segmentation procedure is the edge-preserving denoising of images corresponding to specific masses that reduces pixel-to-pixel variability and improves the segmentation map significantly. Moreover, before applying denoising, we reduce the data set selecting peaks appearing in at least 1% of spectra. High dimensional discriminant clustering completes the procedure. We analyzed two data sets using the proposed pipeline. First, for a rat brain coronal section the calculated segmentation maps highlight the anatomical and functional structure of the brain. Second, a section of a neuroendocrine tumor invading the small intestine was interpreted where the tumor area was discriminated and functionally similar regions were indicated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
Lucas应助踏雪采纳,获得10
1秒前
pluto应助科研通管家采纳,获得10
3秒前
tuanheqi应助科研通管家采纳,获得150
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
4秒前
Battery应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得30
5秒前
浮游应助科研通管家采纳,获得10
5秒前
rylynn完成签到,获得积分10
5秒前
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
李涵发布了新的文献求助10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
Su发布了新的文献求助10
5秒前
Owen应助江睿曦采纳,获得10
6秒前
7秒前
凯凯发布了新的文献求助10
7秒前
8秒前
8秒前
小马甲应助亦玉采纳,获得10
8秒前
赘婿应助xavier采纳,获得10
9秒前
wjw完成签到,获得积分10
9秒前
我很忙完成签到,获得积分10
9秒前
10秒前
10秒前
icreat发布了新的文献求助10
11秒前
研友_VZG7GZ应助LL采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458527
求助须知:如何正确求助?哪些是违规求助? 4564580
关于积分的说明 14295592
捐赠科研通 4489446
什么是DOI,文献DOI怎么找? 2459080
邀请新用户注册赠送积分活动 1448864
关于科研通互助平台的介绍 1424474