Spatial Segmentation of Imaging Mass Spectrometry Data with Edge-Preserving Image Denoising and Clustering

人工智能 分割 聚类分析 模式识别(心理学) 计算机科学 质谱成像 像素 空间分析 计算机视觉 图像分割 数学 质谱法 化学 色谱法 统计
作者
Theodore Alexandrov,Michael Becker,Sören‐Oliver Deininger,Günther Ernst,Liane Wehder,Markus Grasmair,Ferdinand von Eggeling,Herbert Thiele,Peter Maaß
出处
期刊:Journal of Proteome Research [American Chemical Society]
卷期号:9 (12): 6535-6546 被引量:184
标识
DOI:10.1021/pr100734z
摘要

In recent years, matrix-assisted laser desorption/ionization (MALDI)-imaging mass spectrometry has become a mature technology, allowing for reproducible high-resolution measurements to localize proteins and smaller molecules. However, despite this impressive technological advance, only a few papers have been published concerned with computational methods for MALDI-imaging data. We address this issue proposing a new procedure for spatial segmentation of MALDI-imaging data sets. This procedure clusters all spectra into different groups based on their similarity. This partition is represented by a segmentation map, which helps to understand the spatial structure of the sample. The core of our segmentation procedure is the edge-preserving denoising of images corresponding to specific masses that reduces pixel-to-pixel variability and improves the segmentation map significantly. Moreover, before applying denoising, we reduce the data set selecting peaks appearing in at least 1% of spectra. High dimensional discriminant clustering completes the procedure. We analyzed two data sets using the proposed pipeline. First, for a rat brain coronal section the calculated segmentation maps highlight the anatomical and functional structure of the brain. Second, a section of a neuroendocrine tumor invading the small intestine was interpreted where the tumor area was discriminated and functionally similar regions were indicated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刻苦的三问应助热情蜗牛采纳,获得10
1秒前
搜集达人应助kkkkkkkk采纳,获得10
1秒前
情怀应助yutian928采纳,获得10
2秒前
爆米花应助彭泽林采纳,获得10
2秒前
ffw1发布了新的文献求助10
3秒前
3秒前
呆萌的正豪完成签到,获得积分10
3秒前
3秒前
3秒前
阿鸢发布了新的文献求助20
3秒前
无昵称完成签到 ,获得积分10
3秒前
科研通AI6应助我爱乒乓球采纳,获得10
4秒前
煎饼果子发布了新的文献求助10
4秒前
Jasper应助奋斗的年纪采纳,获得10
4秒前
5秒前
LL完成签到 ,获得积分10
5秒前
Bi8bo发布了新的文献求助10
5秒前
薯条完成签到,获得积分10
5秒前
12发布了新的文献求助10
6秒前
大个应助幸运的蜥蜴采纳,获得10
6秒前
6秒前
wzl发布了新的文献求助10
7秒前
Windycityguy发布了新的文献求助10
7秒前
搜集达人应助猫的淡淡采纳,获得30
7秒前
8秒前
科研通AI6应助一包辣条采纳,获得10
8秒前
8秒前
wb完成签到 ,获得积分10
8秒前
9秒前
走走发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
11秒前
葉落葉飄完成签到,获得积分10
11秒前
动听元彤完成签到,获得积分10
11秒前
默默的聪健完成签到,获得积分10
12秒前
12秒前
12秒前
ZZH发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403