Modelling urban expansion guided by land ecological suitability: A case study of Changzhou City, China

城市蔓延 城市扩张 城市规划 中国 地理 土地利用 生态系统服务 环境资源管理 可持续发展 土地利用、土地利用的变化和林业 分布(数学) 环境科学 环境规划 生态学 生态系统 生物 数学分析 考古 数学
作者
Lang Xu,Qingxu Huang,Dongdong Ding,Mengyuan Mei,Hetian Qin
出处
期刊:Habitat international [Elsevier BV]
卷期号:75: 12-24 被引量:41
标识
DOI:10.1016/j.habitatint.2018.04.002
摘要

Rapid urban expansion usually leads to the change of land use pattern and poses a severe threat to land resources with high ecological value, it is necessary to model the impact of urban development on surrounding environment. The aim of our study is to construct an effective model of simulating urban expansion with protecting ecological land, which could provide a decision-making reference for sustainable development of the city and promote the rational distribution of land resources. In this paper, we proposed an urban expansion model based on land ecological suitability (LES). The proposed model involves using the minimum cumulative resistance (MCR) method to evaluate and visualize the land ecological suitability of the study area. Next, the random forest (RF) algorithm and cellular automaton (CA) are combined to construct an RF–CA to simulate future growth of urban land. As a case study, the RF–CA was used to simulate the distribution of urban land in Changzhou City, eastern China in 2020. The LES evaluation results were then used as the basis of optimizing urban expansion and restrained the excessive sprawl of the city, which could reduce encroachment on land resources such as waterbody and farmland, thereby increasing the ecosystem services value (ESV) by 50.24 million RMB(1 RMB = 0.15 US dollar). It was observed that our model could reduce the spatial conflict between urban expansion and ecological land protection effectively. Therefore, we believe that the results of our case study can contribute to more reasonable urban planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助科研通管家采纳,获得10
刚刚
小马甲应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
Akiba完成签到,获得积分10
1秒前
完美世界应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
Wianiu应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
宇宙法完成签到,获得积分10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
斯文明杰发布了新的文献求助10
4秒前
天天快乐应助勾晓彤采纳,获得10
4秒前
4秒前
Profeto应助胡先生的小口袋采纳,获得10
5秒前
Profeto应助胡先生的小口袋采纳,获得10
6秒前
科研q完成签到 ,获得积分10
6秒前
6秒前
6秒前
Ava应助zhuzhu采纳,获得10
6秒前
6秒前
节步青发布了新的文献求助10
8秒前
小邢发布了新的文献求助10
8秒前
桐桐应助端庄煎饼采纳,获得10
9秒前
里大炮发布了新的文献求助10
10秒前
wozai发布了新的文献求助10
10秒前
社会主义接班人完成签到,获得积分10
10秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5215597
求助须知:如何正确求助?哪些是违规求助? 4390701
关于积分的说明 13670504
捐赠科研通 4252590
什么是DOI,文献DOI怎么找? 2333220
邀请新用户注册赠送积分活动 1330838
关于科研通互助平台的介绍 1284652