电阻抗断层成像
有限元法
反问题
边界(拓扑)
电阻抗
计算机科学
断层摄影术
边值问题
反向
算法
结构工程
数学分析
几何学
工程类
数学
物理
电气工程
光学
作者
Yingjun Zhao,Martin Schagerl,Christoph Kralovec
出处
期刊:Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2018
日期:2018-03-27
摘要
Electrical impedance tomography (EIT) is recently demonstrated to be viable for damage localization over a spatial area. The algorithm reconstructs the spatial conductivity distribution within a defined boundary via boundary voltage measurements. To solve this inverse problem, a finite element model (FEM) conforming to the interrogated geometry is required. Previous studies on identifying a center crack’s propagation suggests that an FEM-updating strategy may help identify both the existence of a crack and the plastic zones formed around the crack’s tips. In this paper a data-driven algorithm is applied to automatically update the FEM. The selforganizing map algorithm is adopted to categorize the reconstructed conductivity data, tracing the boundary of the crack to be updated as material-absence. The EIT results from the updated FEM model are able to identify damage location and damage severity with desired accuracy.
科研通智能强力驱动
Strongly Powered by AbleSci AI