控制理论(社会学)
跟踪误差
观察员(物理)
非线性系统
计算机科学
人工神经网络
约束(计算机辅助设计)
跟踪(教育)
控制器(灌溉)
国家观察员
转化(遗传学)
自适应控制
控制(管理)
数学
人工智能
量子力学
生物
基因
物理
生物化学
化学
教育学
心理学
农学
几何学
作者
Cai‐Cheng Wang,Guang‐Hong Yang
标识
DOI:10.1016/j.neucom.2018.01.023
摘要
In this paper, the problem of observer-based adaptive tracking control is investigated for a class of nonlinear systems with unknown control direction, input saturation and tracking error constraint. The Nussbaum function is employed to address the unknown control direction and a state observer is constructed by neural networks (NNs) to estimate the unmeasurable states. A new error constraint transformation is proposed to guarantee that the tracking error satisfies the prescribed performance. Then, a novel adaptive prescribed performance neural network (NN) output feedback tracking control method is designed. It is proved that the designed controller can guarantee the boundedness of all the signals in the closed-loop system and the prescribed time-varying tracking performance. Finally, simulations on two examples are performed to illustrate the efficiency of the proposed control method.
科研通智能强力驱动
Strongly Powered by AbleSci AI