Compressively sampled MR image reconstruction using generalized thresholding iterative algorithm

阈值 迭代重建 压缩传感 算法 迭代法 欠采样 图像质量 计算机科学 人工智能 工件(错误) 计算机视觉 图像(数学) 数学
作者
Sana Elahi,Muhammad Kaleem,Hammad Omer
出处
期刊:Journal of Magnetic Resonance [Elsevier]
卷期号:286: 91-98 被引量:18
标识
DOI:10.1016/j.jmr.2017.11.008
摘要

Compressed sensing (CS) is an emerging area of interest in Magnetic Resonance Imaging (MRI). CS is used for the reconstruction of the images from a very limited number of samples in k-space. This significantly reduces the MRI data acquisition time. One important requirement for signal recovery in CS is the use of an appropriate non-linear reconstruction algorithm. It is a challenging task to choose a reconstruction algorithm that would accurately reconstruct the MR images from the under-sampled k-space data. Various algorithms have been used to solve the system of non-linear equations for better image quality and reconstruction speed in CS. In the recent past, iterative soft thresholding algorithm (ISTA) has been introduced in CS-MRI. This algorithm directly cancels the incoherent artifacts produced because of the undersampling in k-space. This paper introduces an improved iterative algorithm based on p-thresholding technique for CS-MRI image reconstruction. The use of p-thresholding function promotes sparsity in the image which is a key factor for CS based image reconstruction. The p-thresholding based iterative algorithm is a modification of ISTA, and minimizes non-convex functions. It has been shown that the proposed p-thresholding iterative algorithm can be used effectively to recover fully sampled image from the under-sampled data in MRI. The performance of the proposed method is verified using simulated and actual MRI data taken at St. Mary’s Hospital, London. The quality of the reconstructed images is measured in terms of peak signal-to-noise ratio (PSNR), artifact power (AP), and structural similarity index measure (SSIM). The proposed approach shows improved performance when compared to other iterative algorithms based on log thresholding, soft thresholding and hard thresholding techniques at different reduction factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
IAMXC发布了新的文献求助20
1秒前
1秒前
2秒前
3秒前
3秒前
坚强丹雪完成签到,获得积分10
7秒前
陶醉幻丝完成签到,获得积分10
7秒前
Tony12发布了新的文献求助20
9秒前
科研通AI2S应助fei采纳,获得10
9秒前
10秒前
大个应助奋斗的晓丝采纳,获得10
13秒前
13秒前
13秒前
阿怪发布了新的文献求助10
15秒前
情怀应助不敢心动采纳,获得10
16秒前
浮光发布了新的文献求助10
18秒前
Jasper应助煮饭吃Zz采纳,获得10
19秒前
超级的绿凝完成签到 ,获得积分10
19秒前
rosalieshi应助科研通管家采纳,获得30
19秒前
小马甲应助科研通管家采纳,获得10
19秒前
搜集达人应助科研通管家采纳,获得10
19秒前
20秒前
zhikaiyici应助科研通管家采纳,获得10
20秒前
爆米花应助科研通管家采纳,获得10
20秒前
20秒前
rosalieshi应助科研通管家采纳,获得30
20秒前
欣慰土豆完成签到 ,获得积分0
21秒前
受伤的绮山完成签到 ,获得积分20
21秒前
小小富完成签到,获得积分10
23秒前
23秒前
Tony12完成签到,获得积分10
23秒前
24秒前
自然的南露完成签到,获得积分10
26秒前
小彬完成签到 ,获得积分10
28秒前
科研小白发布了新的文献求助10
29秒前
浮光完成签到,获得积分20
29秒前
我是雷锋完成签到,获得积分10
29秒前
DeXu完成签到 ,获得积分10
32秒前
若俗人完成签到,获得积分10
32秒前
受伤的绮山关注了科研通微信公众号
33秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159827
求助须知:如何正确求助?哪些是违规求助? 2810777
关于积分的说明 7889328
捐赠科研通 2469852
什么是DOI,文献DOI怎么找? 1315126
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012