Compressively sampled MR image reconstruction using generalized thresholding iterative algorithm

阈值 迭代重建 压缩传感 算法 迭代法 欠采样 图像质量 计算机科学 人工智能 工件(错误) 计算机视觉 图像(数学) 数学
作者
Sana Elahi,Muhammad Kaleem,Hammad Omer
出处
期刊:Journal of Magnetic Resonance [Elsevier BV]
卷期号:286: 91-98 被引量:18
标识
DOI:10.1016/j.jmr.2017.11.008
摘要

Compressed sensing (CS) is an emerging area of interest in Magnetic Resonance Imaging (MRI). CS is used for the reconstruction of the images from a very limited number of samples in k-space. This significantly reduces the MRI data acquisition time. One important requirement for signal recovery in CS is the use of an appropriate non-linear reconstruction algorithm. It is a challenging task to choose a reconstruction algorithm that would accurately reconstruct the MR images from the under-sampled k-space data. Various algorithms have been used to solve the system of non-linear equations for better image quality and reconstruction speed in CS. In the recent past, iterative soft thresholding algorithm (ISTA) has been introduced in CS-MRI. This algorithm directly cancels the incoherent artifacts produced because of the undersampling in k-space. This paper introduces an improved iterative algorithm based on p-thresholding technique for CS-MRI image reconstruction. The use of p-thresholding function promotes sparsity in the image which is a key factor for CS based image reconstruction. The p-thresholding based iterative algorithm is a modification of ISTA, and minimizes non-convex functions. It has been shown that the proposed p-thresholding iterative algorithm can be used effectively to recover fully sampled image from the under-sampled data in MRI. The performance of the proposed method is verified using simulated and actual MRI data taken at St. Mary’s Hospital, London. The quality of the reconstructed images is measured in terms of peak signal-to-noise ratio (PSNR), artifact power (AP), and structural similarity index measure (SSIM). The proposed approach shows improved performance when compared to other iterative algorithms based on log thresholding, soft thresholding and hard thresholding techniques at different reduction factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
包李完成签到,获得积分10
3秒前
科研小虫完成签到,获得积分10
6秒前
nianxunxi完成签到,获得积分10
7秒前
CipherSage应助一颗椰子糖耶采纳,获得10
7秒前
8秒前
慕青应助叶子采纳,获得10
9秒前
10秒前
无花果应助漂亮白枫采纳,获得10
12秒前
dormraider完成签到,获得积分10
12秒前
13秒前
14秒前
16秒前
ppwl完成签到,获得积分10
17秒前
17秒前
万能图书馆应助bbh采纳,获得10
18秒前
星辰大海应助bbh采纳,获得10
18秒前
Lucas应助bbh采纳,获得10
18秒前
希望天下0贩的0应助bbh采纳,获得10
18秒前
充电宝应助bbh采纳,获得10
18秒前
所所应助bbh采纳,获得10
18秒前
完美世界应助bbh采纳,获得10
18秒前
SciGPT应助bbh采纳,获得10
18秒前
酷波er应助bbh采纳,获得10
18秒前
爱宝乐宝福宝应助bbh采纳,获得10
18秒前
20秒前
21秒前
好消息发布了新的文献求助20
22秒前
22秒前
一直向前发布了新的文献求助10
25秒前
如意的泥猴桃完成签到,获得积分10
27秒前
土拨鼠完成签到 ,获得积分10
27秒前
28秒前
科目三应助林好事采纳,获得10
28秒前
叶子完成签到,获得积分10
28秒前
28秒前
Newt发布了新的文献求助10
29秒前
31秒前
李健应助青黛采纳,获得10
32秒前
小四发布了新的文献求助10
35秒前
Sky36001发布了新的文献求助20
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989797
求助须知:如何正确求助?哪些是违规求助? 3531914
关于积分的说明 11255516
捐赠科研通 3270597
什么是DOI,文献DOI怎么找? 1805008
邀请新用户注册赠送积分活动 882181
科研通“疑难数据库(出版商)”最低求助积分说明 809190