Compressively sampled MR image reconstruction using generalized thresholding iterative algorithm

阈值 迭代重建 压缩传感 算法 迭代法 欠采样 图像质量 计算机科学 人工智能 工件(错误) 计算机视觉 图像(数学) 数学
作者
Sana Elahi,Muhammad Kaleem,Hammad Omer
出处
期刊:Journal of Magnetic Resonance [Elsevier BV]
卷期号:286: 91-98 被引量:18
标识
DOI:10.1016/j.jmr.2017.11.008
摘要

Compressed sensing (CS) is an emerging area of interest in Magnetic Resonance Imaging (MRI). CS is used for the reconstruction of the images from a very limited number of samples in k-space. This significantly reduces the MRI data acquisition time. One important requirement for signal recovery in CS is the use of an appropriate non-linear reconstruction algorithm. It is a challenging task to choose a reconstruction algorithm that would accurately reconstruct the MR images from the under-sampled k-space data. Various algorithms have been used to solve the system of non-linear equations for better image quality and reconstruction speed in CS. In the recent past, iterative soft thresholding algorithm (ISTA) has been introduced in CS-MRI. This algorithm directly cancels the incoherent artifacts produced because of the undersampling in k-space. This paper introduces an improved iterative algorithm based on p-thresholding technique for CS-MRI image reconstruction. The use of p-thresholding function promotes sparsity in the image which is a key factor for CS based image reconstruction. The p-thresholding based iterative algorithm is a modification of ISTA, and minimizes non-convex functions. It has been shown that the proposed p-thresholding iterative algorithm can be used effectively to recover fully sampled image from the under-sampled data in MRI. The performance of the proposed method is verified using simulated and actual MRI data taken at St. Mary’s Hospital, London. The quality of the reconstructed images is measured in terms of peak signal-to-noise ratio (PSNR), artifact power (AP), and structural similarity index measure (SSIM). The proposed approach shows improved performance when compared to other iterative algorithms based on log thresholding, soft thresholding and hard thresholding techniques at different reduction factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡定的依瑶完成签到,获得积分10
刚刚
江璃发布了新的文献求助10
2秒前
3秒前
4秒前
美丽的安珊完成签到,获得积分10
5秒前
5秒前
7秒前
Gilana完成签到,获得积分10
7秒前
xyh发布了新的文献求助10
7秒前
江璃完成签到,获得积分10
8秒前
TT发布了新的文献求助10
8秒前
美梦成真完成签到,获得积分10
9秒前
Gakay完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
szj完成签到,获得积分0
11秒前
旦皋完成签到,获得积分10
11秒前
赘婿应助花壳在逃野猪采纳,获得10
12秒前
卷卷完成签到,获得积分10
14秒前
JSY完成签到 ,获得积分20
14秒前
xyh完成签到,获得积分10
15秒前
小曾应助Florencia采纳,获得10
16秒前
神外王001完成签到 ,获得积分10
16秒前
21秒前
你是谁完成签到,获得积分10
22秒前
majf完成签到,获得积分10
23秒前
linhanwenzhou完成签到,获得积分10
23秒前
JSY关注了科研通微信公众号
23秒前
853225598完成签到,获得积分10
23秒前
798完成签到,获得积分10
24秒前
善学以致用应助董怼怼采纳,获得10
24秒前
妍儿完成签到,获得积分20
25秒前
隐形曼青应助高大的水壶采纳,获得10
25秒前
马哥二弟无敌完成签到 ,获得积分10
26秒前
27秒前
Florencia完成签到,获得积分10
27秒前
务实颜完成签到 ,获得积分10
27秒前
27秒前
amberzyc应助小远采纳,获得10
28秒前
28秒前
29秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029