Tuning the activity of the inert MoS2 surface via graphene oxide support doping towards chemical functionalization and hydrogen evolution: a density functional study.

密度泛函理论 表面改性 X射线光电子能谱 纳米技术 电子结构 吸附 费米能级 带隙
作者
Shaobin Tang,Weihua Wu,Shiyong Zhang,Dongnai Ye,Ping Zhong,Xiaokang Li,Liangxian Liu,Yafei Li
出处
期刊:Physical Chemistry Chemical Physics [The Royal Society of Chemistry]
卷期号:20 (3): 1861-1871 被引量:19
标识
DOI:10.1039/c7cp06636h
摘要

The basal plane of MoS2 provides a promising platform for chemical functionalization and the hydrogen evolution reaction (HER); however, its practical utilization remains challenging due to the lack of active sites and its low conductivity. Herein, using first principles simulations, we first proposed a novel and effective strategy for significantly enhancing the activity of the inert MoS2 surface using a graphene oxide (GO) support (MoS2/GOs). The chemical bonding of the functional groups (CH3 and NH2) on the MoS2–GO hybrid is stronger than that in freestanding MoS2 or MoS2–graphene. Upon increasing the oxygen group concentration or introducing N heteroatoms into the GO support, the stability of the chemically functionalized MoS2 is improved. Furthermore, use of GOs to support pristine and defective MoS2 with a S vacancy (S-MoS2) can greatly promote the HER activity of the basal plane. The catalytic activity of S-MoS2 is further enhanced by doping N into GOs; this results in a hydrogen adsorption free energy of almost zero (ΔGH = ∼−0.014 eV). The coupling interaction with the GO substrate reduces the p-type Schottky barrier heights (SBH) of S-MoS2 and modifies its electronic properties, which facilitate charge transfer between them. Our calculated results are consistent with the experimental observations. Thus, the present results open new avenues for the chemical functionalization of MoS2-based nanosheets and HER catalysts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhuyanqi完成签到,获得积分10
1秒前
1秒前
xy完成签到,获得积分10
2秒前
QQQ11发布了新的文献求助10
2秒前
ANCY发布了新的文献求助30
2秒前
cc发布了新的文献求助10
3秒前
111发布了新的文献求助10
3秒前
3秒前
科研通AI6应助可爱的芷云采纳,获得10
3秒前
wencan发布了新的文献求助10
4秒前
5秒前
糖焗小馒头完成签到,获得积分10
5秒前
优美凡白发布了新的文献求助10
5秒前
无花果应助li采纳,获得10
6秒前
雪白依云完成签到,获得积分10
6秒前
8秒前
8秒前
9秒前
clearlove发布了新的文献求助10
10秒前
辛勤寻凝发布了新的文献求助10
11秒前
爆米花应助111采纳,获得10
11秒前
淡然胡萝卜完成签到,获得积分10
12秒前
Xbox完成签到,获得积分10
12秒前
喵小喵完成签到,获得积分10
13秒前
13秒前
乐乐应助Accepted采纳,获得10
13秒前
zoe发布了新的文献求助10
14秒前
Mic应助yangbo666采纳,获得10
15秒前
菠萝发布了新的文献求助10
16秒前
17秒前
小鱼头发布了新的文献求助10
17秒前
lan完成签到 ,获得积分10
18秒前
直率鼠标完成签到,获得积分10
18秒前
辛勤寻凝完成签到,获得积分10
18秒前
多多完成签到 ,获得积分20
19秒前
大模型应助zoe采纳,获得10
20秒前
22秒前
22秒前
24秒前
量子星尘发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Research Handbook on Social Interaction 1000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5656628
求助须知:如何正确求助?哪些是违规求助? 4804442
关于积分的说明 15076544
捐赠科研通 4814884
什么是DOI,文献DOI怎么找? 2576051
邀请新用户注册赠送积分活动 1531356
关于科研通互助平台的介绍 1489936