JSON文件
计算机科学
数据压缩
大数据
算法
可视化
背景(考古学)
JavaScript
数据挖掘
实时计算
嵌入式系统
数据库
生物
古生物学
程序设计语言
作者
Mohamed Adel Serhani,Mohamed El Menshawy,Abdelghani Benharref,Saad Harous,Alramzana Nujum Navaz
标识
DOI:10.1016/j.cmpb.2017.07.007
摘要
Recent advances in miniature biomedical sensors, mobile smartphones, wireless communications, and distributed computing technologies provide promising techniques for developing mobile health systems. Such systems are capable of monitoring epileptic seizures reliably, which are classified as chronic diseases. Three challenging issues raised in this context with regard to the transformation, compression, storage, and visualization of big data, which results from a continuous recording of epileptic seizures using mobile devices. In this paper, we address the above challenges by developing three new algorithms to process and analyze big electroencephalography data in a rigorous and efficient manner. The first algorithm is responsible for transforming the standard European Data Format (EDF) into the standard JavaScript Object Notation (JSON) and compressing the transformed JSON data to decrease the size and time through the transfer process and to increase the network transfer rate. The second algorithm focuses on collecting and storing the compressed files generated by the transformation and compression algorithm. The collection process is performed with respect to the on-the-fly technique after decompressing files. The third algorithm provides relevant real-time interaction with signal data by prospective users. It particularly features the following capabilities: visualization of single or multiple signal channels on a smartphone device and query data segments. We tested and evaluated the effectiveness of our approach through a software architecture model implementing a mobile health system to monitor epileptic seizures. The experimental findings from 45 experiments are promising and efficiently satisfy the approach's objectives in a price of linearity. Moreover, the size of compressed JSON files and transfer times are reduced by 10% and 20%, respectively, while the average total time is remarkably reduced by 67% through all performed experiments. Our approach successfully develops efficient algorithms in terms of processing time, memory usage, and energy consumption while maintaining a high scalability of the proposed solution. Our approach efficiently supports data partitioning and parallelism relying on the MapReduce platform, which can help in monitoring and automatic detection of epileptic seizures.
科研通智能强力驱动
Strongly Powered by AbleSci AI