Convolutional Neural Network Based Metal Artifact Reduction in X-Ray Computed Tomography

卷积神经网络 人工智能 计算机科学 还原(数学) 计算机视觉 图像(数学) 工件(错误) 模式识别(心理学) 迭代重建 断层摄影术 数学 光学 物理 几何学
作者
Yanbo Zhang,Hengyong Yu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:37 (6): 1370-1381 被引量:226
标识
DOI:10.1109/tmi.2018.2823083
摘要

In the presence of metal implants, metal artifacts are introduced to x-ray computed tomography CT images. Although a large number of metal artifact reduction (MAR) methods have been proposed in the past decades, MAR is still one of the major problems in clinical x-ray CT. In this paper, we develop a convolutional neural network (CNN)-based open MAR framework, which fuses the information from the original and corrected images to suppress artifacts. The proposed approach consists of two phases. In the CNN training phase, we build a database consisting of metal-free, metal-inserted and pre-corrected CT images, and image patches are extracted and used for CNN training. In the MAR phase, the uncorrected and pre-corrected images are used as the input of the trained CNN to generate a CNN image with reduced artifacts. To further reduce the remaining artifacts, water equivalent tissues in a CNN image are set to a uniform value to yield a CNN prior, whose forward projections are used to replace the metal-affected projections, followed by the FBP reconstruction. The effectiveness of the proposed method is validated on both simulated and real data. Experimental results demonstrate the superior MAR capability of the proposed method to its competitors in terms of artifact suppression and preservation of anatomical structures in the vicinity of metal implants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青年才俊发布了新的文献求助10
1秒前
2秒前
Zsx发布了新的文献求助10
2秒前
2秒前
4秒前
4秒前
英俊的铭应助bear采纳,获得10
5秒前
6秒前
6秒前
科研通AI5应助zzzxiangyi采纳,获得10
7秒前
kelly发布了新的文献求助10
9秒前
morena发布了新的文献求助10
10秒前
大模型应助清爽难敌采纳,获得30
11秒前
11秒前
mcxkjnv完成签到,获得积分10
11秒前
zzzz关注了科研通微信公众号
11秒前
11秒前
淡淡采白发布了新的文献求助10
12秒前
12秒前
lpf发布了新的文献求助10
13秒前
14秒前
15秒前
镓氧锌钇铀完成签到,获得积分10
15秒前
英姑应助愤怒的铁身采纳,获得10
15秒前
ff发布了新的文献求助20
15秒前
栖迟发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
17秒前
所所应助caoxiongfeng_512采纳,获得20
17秒前
lsybf发布了新的文献求助10
17秒前
jiejie发布了新的文献求助10
19秒前
端端完成签到,获得积分10
20秒前
SciGPT应助多肉葡萄采纳,获得10
20秒前
深情安青应助xh采纳,获得10
21秒前
小只bb发布了新的文献求助30
21秒前
上官若男应助jiangzuo采纳,获得10
22秒前
清爽难敌发布了新的文献求助30
22秒前
22秒前
simple1完成签到 ,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5075598
求助须知:如何正确求助?哪些是违规求助? 4295360
关于积分的说明 13384177
捐赠科研通 4117030
什么是DOI,文献DOI怎么找? 2254637
邀请新用户注册赠送积分活动 1259275
关于科研通互助平台的介绍 1192040