Convolutional Neural Network Based Metal Artifact Reduction in X-Ray Computed Tomography

卷积神经网络 人工智能 计算机科学 还原(数学) 计算机视觉 图像(数学) 工件(错误) 模式识别(心理学) 迭代重建 断层摄影术 数学 光学 物理 几何学
作者
Yanbo Zhang,Hengyong Yu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:37 (6): 1370-1381 被引量:150
标识
DOI:10.1109/tmi.2018.2823083
摘要

In the presence of metal implants, metal artifacts are introduced to x-ray computed tomography CT images. Although a large number of metal artifact reduction (MAR) methods have been proposed in the past decades, MAR is still one of the major problems in clinical x-ray CT. In this paper, we develop a convolutional neural network (CNN)-based open MAR framework, which fuses the information from the original and corrected images to suppress artifacts. The proposed approach consists of two phases. In the CNN training phase, we build a database consisting of metal-free, metal-inserted and pre-corrected CT images, and image patches are extracted and used for CNN training. In the MAR phase, the uncorrected and pre-corrected images are used as the input of the trained CNN to generate a CNN image with reduced artifacts. To further reduce the remaining artifacts, water equivalent tissues in a CNN image are set to a uniform value to yield a CNN prior, whose forward projections are used to replace the metal-affected projections, followed by the FBP reconstruction. The effectiveness of the proposed method is validated on both simulated and real data. Experimental results demonstrate the superior MAR capability of the proposed method to its competitors in terms of artifact suppression and preservation of anatomical structures in the vicinity of metal implants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小乔要努力变强完成签到,获得积分10
刚刚
YANG完成签到 ,获得积分10
刚刚
刚刚
在水一方应助马保国123采纳,获得10
刚刚
Jovid完成签到,获得积分10
1秒前
建成完成签到,获得积分10
1秒前
爆米花应助落落采纳,获得10
1秒前
852应助liu123479采纳,获得20
2秒前
2秒前
无情念之发布了新的文献求助10
2秒前
lilac应助Rocky采纳,获得10
2秒前
2秒前
深情安青应助OYE采纳,获得10
3秒前
3秒前
李爱国应助热情的阿猫桑采纳,获得10
3秒前
3秒前
3秒前
花花完成签到,获得积分10
4秒前
无花果应助韭黄采纳,获得10
4秒前
啦某某发布了新的文献求助20
5秒前
cc发布了新的文献求助30
5秒前
7秒前
一颗苹果完成签到,获得积分10
7秒前
故意的傲玉应助小月采纳,获得10
8秒前
nicemice发布了新的文献求助10
8秒前
xtlx完成签到,获得积分10
8秒前
蓝桉完成签到,获得积分10
9秒前
执着的怜寒应助aaaabc采纳,获得20
9秒前
9秒前
花花发布了新的文献求助10
9秒前
万能图书馆应助白华苍松采纳,获得10
10秒前
孔大漂亮完成签到,获得积分10
11秒前
12秒前
打打应助HopeStar采纳,获得10
12秒前
12秒前
科研通AI5应助标致小伙采纳,获得30
12秒前
有风发布了新的文献求助10
12秒前
12秒前
路在脚下完成签到 ,获得积分10
12秒前
bkagyin应助GOODYUE采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759