Active vibration-based structural health monitoring system for wind turbine blade: Demonstration on an operating Vestas V27 wind turbine

涡轮叶片 涡轮机 振动 后缘 结构健康监测 加速度计 风力发电 海洋工程 前沿 结构工程 声学 工程类 航空航天工程 计算机科学 物理 电气工程 操作系统
作者
Dmitri Tcherniak,Lasse Lohilahti Mølgaard
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:16 (5): 536-550 被引量:71
标识
DOI:10.1177/1475921717722725
摘要

This study presents a structural health monitoring system that is able to detect structural defects of wind turbine blade such as cracks, leading/trailing-edge opening, or delamination. It is shown that even small defects of at least 15 cm size can be detected remotely without stopping the wind turbine. The structural health monitoring system presented is vibration-based: mechanical energy is artificially introduced by means of an electromechanical actuator, whose plunger periodically hits the blade. The induced vibrations propagate along the blade and are picked up by accelerometers mounted along the blade. The vibrations in mid-range frequencies are utilized: this range is above the frequencies excited by blade–wind interaction, ensuring a good signal-to-noise ratio. At the same time, the corresponding wavelength is short enough to deliver required damage detection resolution and long enough to be able to propagate the entire blade length. This article demonstrates the system on a Vestas V27 wind turbine. One blade of the wind turbine was equipped with the system, and a 3.5-month monitoring campaign was conducted while the turbine was operating normally. During the campaign, a defect—a trailing-edge opening—was artificially introduced into the blade and its size was gradually increased from the original 15 to 45 cm. Using a semi-supervised learning algorithm, the system was able to detect even the smallest amount of damage while the wind turbine was operating under different weather conditions. This article provides detailed information about the instrumentation and the measurement campaign and explains the damage detection algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孔大漂亮完成签到,获得积分10
1秒前
2秒前
打打应助HopeStar采纳,获得10
2秒前
2秒前
科研通AI5应助标致小伙采纳,获得30
2秒前
有风发布了新的文献求助10
2秒前
2秒前
路在脚下完成签到 ,获得积分10
2秒前
bkagyin应助GOODYUE采纳,获得10
3秒前
Jasper应助彩色的蓝天采纳,获得10
3秒前
詹严青发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
郭翔完成签到,获得积分10
4秒前
Yeong发布了新的文献求助10
5秒前
jh完成签到 ,获得积分10
5秒前
syq完成签到,获得积分10
6秒前
sfw完成签到,获得积分10
6秒前
7秒前
光亮面包完成签到 ,获得积分10
7秒前
小猪啵比完成签到 ,获得积分10
7秒前
小智发布了新的文献求助10
7秒前
毛慢慢发布了新的文献求助10
7秒前
lilac应助1234567890采纳,获得10
8秒前
OYE发布了新的文献求助10
8秒前
木木发布了新的文献求助10
9秒前
zhy完成签到,获得积分10
10秒前
10秒前
自由的刺猬完成签到,获得积分20
10秒前
潇洒甜瓜发布了新的文献求助10
11秒前
jessie完成签到,获得积分10
11秒前
化学胖子完成签到,获得积分10
11秒前
12秒前
CTL关闭了CTL文献求助
12秒前
詹严青完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
顾矜应助Long采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759