Portfolio Optimization with Entropic Value-at-Risk

文件夹 预期短缺 风险价值 计算机科学 经济 项目组合管理 计量经济学 价值(数学) 精算学 现代投资组合理论 复制投资组合 数理经济学 风险管理
作者
Amir Ahmadi-Javid,Malihe Fallah-Tafti
出处
期刊:European Journal of Operational Research [Elsevier]
卷期号:279 (1): 225-241 被引量:28
标识
DOI:10.1016/j.ejor.2019.02.007
摘要

Abstract The entropic value-at-risk (EVaR) is a new coherent risk measure, which is an upper bound for both the value-at-risk (VaR) and conditional value-at-risk (CVaR). One of the important properties of the EVaR is that it is strongly monotone over its domain and strictly monotone over a broad sub-domain including all continuous distributions, whereas well-known monotone risk measures such as the VaR and CVaR lack this property. A key feature of a risk measure, besides its financial properties, is its applicability in large-scale sample-based portfolio optimization. If the negative return of an investment portfolio is a differentiable convex function for any sampling observation, the portfolio optimization with the EVaR results in a differentiable convex program whose number of variables and constraints is independent of the sample size, which is not the case for the VaR and CVaR even if the portfolio rate linearly depends on the decision variables. This enables us to design an efficient algorithm using differentiable convex optimization. Our extensive numerical study indicates the high efficiency of the algorithm in large scales, when compared with the existing convex optimization software packages. The computational efficiency of the EVaR and CVaR approaches are generally similar, but the EVaR approach outperforms the other as the sample size increases. Moreover, the comparison of the portfolios obtained for a real case by the EVaR and CVaR approaches shows that the EVaR-based portfolios can have better best, mean, and worst return rates as well as Sharpe ratios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yanmengzhen完成签到 ,获得积分10
1秒前
砂锅粥发布了新的文献求助10
2秒前
所所应助Derik采纳,获得10
2秒前
3秒前
qcwindchasing完成签到 ,获得积分10
3秒前
4秒前
重要冷雁完成签到,获得积分10
4秒前
Lianna发布了新的文献求助20
5秒前
火星上的之卉关注了科研通微信公众号
6秒前
6秒前
NaCl发布了新的文献求助10
7秒前
李家新29完成签到,获得积分10
7秒前
7秒前
iNk应助lilei采纳,获得10
7秒前
8秒前
Akim应助Deeeppp采纳,获得10
10秒前
米饭发布了新的文献求助10
10秒前
GodMG完成签到 ,获得积分10
11秒前
11秒前
12秒前
13秒前
李倇仪完成签到 ,获得积分10
13秒前
14秒前
14秒前
笨蛋琪露诺完成签到,获得积分10
14秒前
14秒前
打打应助guoguo采纳,获得30
15秒前
chen0424发布了新的文献求助50
16秒前
温暖幻桃发布了新的文献求助10
16秒前
X.-CHEN发布了新的文献求助10
17秒前
17秒前
18秒前
橘子完成签到,获得积分10
18秒前
毛豆应助漂亮幻莲采纳,获得10
18秒前
kaka完成签到,获得积分10
19秒前
dyuguo3完成签到 ,获得积分10
19秒前
19秒前
Deeeppp完成签到,获得积分10
21秒前
永远爱刻晴完成签到 ,获得积分10
22秒前
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312139
求助须知:如何正确求助?哪些是违规求助? 2944769
关于积分的说明 8521299
捐赠科研通 2620463
什么是DOI,文献DOI怎么找? 1432849
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650115