Portfolio Optimization with Entropic Value-at-Risk

文件夹 预期短缺 风险价值 计算机科学 经济 项目组合管理 计量经济学 价值(数学) 精算学 现代投资组合理论 复制投资组合 数理经济学 风险管理
作者
Amir Ahmadi-Javid,Malihe Fallah-Tafti
出处
期刊:European Journal of Operational Research [Elsevier]
卷期号:279 (1): 225-241 被引量:28
标识
DOI:10.1016/j.ejor.2019.02.007
摘要

Abstract The entropic value-at-risk (EVaR) is a new coherent risk measure, which is an upper bound for both the value-at-risk (VaR) and conditional value-at-risk (CVaR). One of the important properties of the EVaR is that it is strongly monotone over its domain and strictly monotone over a broad sub-domain including all continuous distributions, whereas well-known monotone risk measures such as the VaR and CVaR lack this property. A key feature of a risk measure, besides its financial properties, is its applicability in large-scale sample-based portfolio optimization. If the negative return of an investment portfolio is a differentiable convex function for any sampling observation, the portfolio optimization with the EVaR results in a differentiable convex program whose number of variables and constraints is independent of the sample size, which is not the case for the VaR and CVaR even if the portfolio rate linearly depends on the decision variables. This enables us to design an efficient algorithm using differentiable convex optimization. Our extensive numerical study indicates the high efficiency of the algorithm in large scales, when compared with the existing convex optimization software packages. The computational efficiency of the EVaR and CVaR approaches are generally similar, but the EVaR approach outperforms the other as the sample size increases. Moreover, the comparison of the portfolios obtained for a real case by the EVaR and CVaR approaches shows that the EVaR-based portfolios can have better best, mean, and worst return rates as well as Sharpe ratios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴玉杰完成签到,获得积分10
刚刚
刚刚
xxx发布了新的文献求助10
1秒前
1秒前
聪明胡图图完成签到,获得积分10
1秒前
糖堆儿爱吃糖完成签到,获得积分10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
比和vv应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
乐空思应助科研通管家采纳,获得50
2秒前
wanci应助科研通管家采纳,获得10
2秒前
Macro应助科研通管家采纳,获得10
2秒前
寒鸦浮水完成签到,获得积分10
2秒前
小药童应助科研通管家采纳,获得10
2秒前
AneyWinter66应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
小马甲应助蔺瑾瑜采纳,获得10
3秒前
快乐鞋垫完成签到,获得积分20
3秒前
3秒前
3秒前
Archer完成签到,获得积分10
3秒前
小鹅发布了新的文献求助10
3秒前
shelly0621发布了新的文献求助10
3秒前
搜集达人应助浏阳河采纳,获得10
3秒前
11发布了新的文献求助10
4秒前
LOT完成签到,获得积分10
4秒前
Wecple完成签到 ,获得积分10
4秒前
4秒前
4秒前
5秒前
马晓玲发布了新的文献求助10
6秒前
6秒前
Jasper应助冷傲之玉采纳,获得10
6秒前
Jarl发布了新的文献求助10
6秒前
天天快乐应助单纯的乐曲采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612759
求助须知:如何正确求助?哪些是违规求助? 4697823
关于积分的说明 14895857
捐赠科研通 4734427
什么是DOI,文献DOI怎么找? 2546674
邀请新用户注册赠送积分活动 1510710
关于科研通互助平台的介绍 1473494