Sensitivity of WOFOST-based modelling solutions to crop parameters under climate change

排名(信息检索) 向日葵 环境科学 气候变化 作物产量 产量(工程) 极端天气 差异(会计) 作物 灵敏度(控制系统) 农业工程 数学 统计 计算机科学 农学 生态学 生物 机器学习 工程类 材料科学 业务 会计 冶金 电子工程
作者
Carlo Gilardelli,Roberto Confalonieri,G. Cappelli,Gianni Bellocchi
出处
期刊:Ecological Modelling [Elsevier]
卷期号:368: 1-14 被引量:34
标识
DOI:10.1016/j.ecolmodel.2017.11.003
摘要

The formalization of novel equations explicitly modelling the impact of extreme weather events into the crop model WOFOST (EMS: existing modelling solution; MMS: modified modelling solution) is proposed as a way to reduce the uncertainty in estimations of crop yield. A sensitivity analysis (SA) was performed to assess the effect of changing parameters values on the yield simulated by the model (both EMS and MMS) for different crops (winter and durum wheat, winter barley, maize, sunflower) grown under a variety of conditions (including future climate realisations) in Europe. A two-step SA was performed using global techniques: the Morris screening method for qualitative ranking of parameters was first used, followed by the eFAST variance-based method, which attributes portions of variance in the model output to each parameter. The results showed that the parameters related to the partitioning of assimilates to storage organs (FOTB) and to the conversion efficiency of photosynthates into storage organs (CVO) generally affected considerably the simulated yield (also underlying tight correlation with this output), whereas the parameters involved with respiration rate (Q10) or specific leaf area (SLA) became influential in case of unfavourable weather conditions. Major differences between EMS and MMS (which includes a component simulating the impact of extreme weather events) emerged in extreme cases of crop failure triggered by markedly negative minimum temperatures. With few exceptions, the two SA methods revealed the same parameter ranking. We argue that the SA performed in this study can be useful in the design of crop modelling studies and in the implementation of crop yield forecasting systems in Europe.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小宇OvO发布了新的文献求助10
1秒前
1秒前
忘羡222完成签到,获得积分10
1秒前
专一发布了新的文献求助10
3秒前
跳跃曼文完成签到,获得积分10
4秒前
干将莫邪完成签到,获得积分10
5秒前
SYLH应助exile采纳,获得10
5秒前
小二郎应助魔幻的从梦采纳,获得10
6秒前
7秒前
雪鸽鸽发布了新的文献求助10
7秒前
8秒前
9秒前
9秒前
10秒前
科研通AI5应助朱一龙采纳,获得30
11秒前
SharonDu完成签到 ,获得积分10
12秒前
ayin完成签到,获得积分10
12秒前
13秒前
13秒前
啦啦啦完成签到,获得积分10
13秒前
coffee发布了新的文献求助10
14秒前
14秒前
科研混子发布了新的文献求助10
14秒前
咿咿呀呀发布了新的文献求助10
14秒前
酷酷碧发布了新的文献求助10
16秒前
飘逸宛丝完成签到,获得积分10
17秒前
qzaima发布了新的文献求助10
17秒前
米酒完成签到,获得积分10
19秒前
step_stone给step_stone的求助进行了留言
19秒前
乐乐应助ayin采纳,获得10
20秒前
无花果应助hhh采纳,获得10
22秒前
叁壹粑粑完成签到,获得积分10
23秒前
酷酷碧完成签到,获得积分10
23秒前
24秒前
磕盐民工完成签到,获得积分10
25秒前
25秒前
忘羡222发布了新的文献求助20
25秒前
我是老大应助TT采纳,获得10
27秒前
27秒前
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824