Sensitivity of WOFOST-based modelling solutions to crop parameters under climate change

排名(信息检索) 向日葵 环境科学 气候变化 作物产量 产量(工程) 极端天气 差异(会计) 作物 灵敏度(控制系统) 农业工程 数学 统计 计算机科学 农学 生态学 生物 机器学习 工程类 电子工程 业务 冶金 材料科学 会计
作者
Carlo Gilardelli,Roberto Confalonieri,G. Cappelli,Gianni Bellocchi
出处
期刊:Ecological Modelling [Elsevier]
卷期号:368: 1-14 被引量:34
标识
DOI:10.1016/j.ecolmodel.2017.11.003
摘要

The formalization of novel equations explicitly modelling the impact of extreme weather events into the crop model WOFOST (EMS: existing modelling solution; MMS: modified modelling solution) is proposed as a way to reduce the uncertainty in estimations of crop yield. A sensitivity analysis (SA) was performed to assess the effect of changing parameters values on the yield simulated by the model (both EMS and MMS) for different crops (winter and durum wheat, winter barley, maize, sunflower) grown under a variety of conditions (including future climate realisations) in Europe. A two-step SA was performed using global techniques: the Morris screening method for qualitative ranking of parameters was first used, followed by the eFAST variance-based method, which attributes portions of variance in the model output to each parameter. The results showed that the parameters related to the partitioning of assimilates to storage organs (FOTB) and to the conversion efficiency of photosynthates into storage organs (CVO) generally affected considerably the simulated yield (also underlying tight correlation with this output), whereas the parameters involved with respiration rate (Q10) or specific leaf area (SLA) became influential in case of unfavourable weather conditions. Major differences between EMS and MMS (which includes a component simulating the impact of extreme weather events) emerged in extreme cases of crop failure triggered by markedly negative minimum temperatures. With few exceptions, the two SA methods revealed the same parameter ranking. We argue that the SA performed in this study can be useful in the design of crop modelling studies and in the implementation of crop yield forecasting systems in Europe.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yiyi发布了新的文献求助10
刚刚
fengmian完成签到,获得积分10
刚刚
科大鲨鱼发布了新的文献求助10
1秒前
2秒前
3秒前
嘿嘿哒发布了新的文献求助10
3秒前
阿真驳回了慕青应助
4秒前
英姑应助欢喜夏兰采纳,获得10
4秒前
outf完成签到 ,获得积分10
4秒前
4秒前
5秒前
qiao完成签到,获得积分10
5秒前
qaw发布了新的文献求助10
6秒前
传奇3应助kerguelen采纳,获得10
6秒前
ZZZ发布了新的文献求助10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
一一应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
JHJ123应助科研通管家采纳,获得10
7秒前
autunnn发布了新的文献求助10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
zyd应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得30
8秒前
崔噔噔应助科研通管家采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得30
8秒前
灵活的胖子wxp完成签到,获得积分10
9秒前
顺心的舞蹈完成签到,获得积分10
10秒前
wan2gwan2g发布了新的文献求助200
11秒前
Owen应助黄青青采纳,获得10
11秒前
qianmo完成签到 ,获得积分10
11秒前
搜集达人应助qaw采纳,获得10
13秒前
ZZ_star完成签到,获得积分10
13秒前
14秒前
阳秋子完成签到,获得积分10
14秒前
bzlish发布了新的文献求助10
14秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129285
求助须知:如何正确求助?哪些是违规求助? 2780109
关于积分的说明 7746184
捐赠科研通 2435286
什么是DOI,文献DOI怎么找? 1294008
科研通“疑难数据库(出版商)”最低求助积分说明 623498
版权声明 600542