粒子群优化
多群优化
元启发式
水准点(测量)
计算机科学
人工神经网络
非线性系统
数学优化
群体行为
并行元启发式
元优化
群体智能
人工智能
算法
数学
物理
量子力学
大地测量学
地理
作者
James Kennedy,Russell C. Eberhart
出处
期刊:International Conference on Networks
日期:2002-11-19
被引量:30859
标识
DOI:10.1109/icnn.1995.488968
摘要
A concept for the optimization of nonlinear functions using particle swarm methodology is introduced. The evolution of several paradigms is outlined, and an implementation of one of the paradigms is discussed. Benchmark testing of the paradigm is described, and applications, including nonlinear function optimization and neural network training, are proposed. The relationships between particle swarm optimization and both artificial life and genetic algorithms are described.
科研通智能强力驱动
Strongly Powered by AbleSci AI