Investigation of the Performance Improvement of Silicon Electrodes Cycled with Electrolyte Containing FEC or VC

电解质 阳极 电极 电化学 化学工程 材料科学 介电谱 锂(药物) 化学 光电子学 医学 工程类 内分泌学 物理化学
作者
Brett L. Lucht,Cao Cuong Nguyen
出处
期刊:Meeting abstracts 卷期号:MA2014-02 (7): 509-509
标识
DOI:10.1149/ma2014-02/7/509
摘要

Silicon is one of the most promising candidates for an anode material in LIBs due to the high theoretical capacity, 3580 mAh/g. This theoretical capacity is ~10 times that of commercial graphite (372 mAh/g) currently used in lithium ion batteries. However the silicon electrodes have a very large volume expansion (300–400%) during lithiation resulting in instability of the solid electrolyte interphase (SEI) and poor capacity retention. The two most frequently utilized SEI stabilizing additives are vinylene carbonate (VC) and fluoroethylene carbonate (FEC). A systematic comparison of the effects of added FEC or VC at multiple concentrations is being conducted with uniform silicon nano-particle electrodes. Capacity retention of Li/silicon nano-particle cells with different concentrations of VC and FEC in 1.2 M LiPF 6 in 1:1 EC/DEC have been investigated. The capacity fades very rapidly for the baseline electrolyte. Incorporation of FEC at any of the concentrations investigated (5, 10, 15, or 25 %) results in significant improvements in capacity retention. Interestingly, intermediate concentrations of FEC 10-15 % give the best capacity retention suggesting that lower concentrations do not generate a sufficiently stable SEI while higher concentrations may results in increased cell resistance. Cells containing added VC do not have significantly better performance than the cells containing the baseline electrolyte. Incorporation of 3 % VC results in cells with very similar capacity fade to the baseline electrolyte, while cells containing 6 % VC have an odd intermittent behavior which may be due to high cell impedance as evidenced by electrochemical impedance spectroscopy. The cycling efficiencies correlate very well with the capacity retention. Cells containing 10-15 % FEC have the best efficiencies (~99 % for cycles 10-50), while cells containing the baseline electrolyte or electrolyte with added VC have lower efficiencies (<98 % for cycles 10-50). Ex-situ surface analysis of the electrodes after cycling via a combination of SEM, XPS and FT-IR will be reported. Structural characterization of the SEI will lead to a better understanding of the source of performance enhancement due to the incorporation of added FEC. Acknowledgements This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, Subcontract No 6879235 under the Batteries for Advanced Transportation Technologies (BATT) Program.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温言完成签到,获得积分10
刚刚
思源应助Neko采纳,获得10
刚刚
Jasper应助通~采纳,获得10
1秒前
1秒前
wary完成签到,获得积分10
1秒前
1秒前
11发布了新的文献求助10
2秒前
3秒前
张小敏发布了新的文献求助10
3秒前
lt_zyk完成签到,获得积分10
4秒前
4秒前
wary发布了新的文献求助10
5秒前
清爽老九完成签到,获得积分10
5秒前
Orange应助张鱼小丸子采纳,获得10
5秒前
6秒前
7秒前
雨夜星空完成签到,获得积分10
7秒前
饱满的半青完成签到 ,获得积分10
8秒前
8秒前
务实盼海发布了新的文献求助10
8秒前
Jouleken完成签到,获得积分10
8秒前
9秒前
zq00完成签到,获得积分10
9秒前
9秒前
斯文败类应助独木舟采纳,获得10
9秒前
易哒哒完成签到,获得积分10
9秒前
CCL应助QXS采纳,获得50
10秒前
大方安白完成签到,获得积分10
10秒前
Xxaaa完成签到,获得积分20
10秒前
张小敏完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
科研通AI2S应助Zhong采纳,获得10
12秒前
yidashi完成签到,获得积分10
12秒前
Kelvin.Tsi完成签到 ,获得积分10
12秒前
Island发布了新的文献求助10
13秒前
hu970发布了新的文献求助10
13秒前
九九发布了新的文献求助10
13秒前
123456完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762