Models for estimating daily rainfall erosivity in China

环境科学 水文学(农业) 气候学 气象学 地质学 地理 岩土工程
作者
Yun Xie,Shuiqing Yin,Baoyuan Liu,M. A. Nearing,Ying Zhao
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:535: 547-558 被引量:180
标识
DOI:10.1016/j.jhydrol.2016.02.020
摘要

Summary The rainfall erosivity factor (R) represents the multiplication of rainfall energy and maximum 30 min intensity by event (EI30) and year. This rainfall erosivity index is widely used for empirical soil loss prediction. Its calculation, however, requires high temporal resolution rainfall data that are not readily available in many parts of the world. The purpose of this study was to parameterize models suitable for estimating erosivity from daily rainfall data, which are more widely available. One-minute resolution rainfall data recorded in sixteen stations over the eastern water erosion impacted regions of China were analyzed. The R-factor ranged from 781.9 to 8258.5 MJ mm ha−1 h−1 y−1. A total of 5942 erosive events from one-minute resolution rainfall data of ten stations were used to parameterize three models, and 4949 erosive events from the other six stations were used for validation. A threshold of daily rainfall between days classified as erosive and non-erosive was suggested to be 9.7 mm based on these data. Two of the models (I and II) used power law functions that required only daily rainfall totals. Model I used different model coefficients in the cool season (Oct.–Apr.) and warm season (May–Sept.), and Model II was fitted with a sinusoidal curve of seasonal variation. Both Model I and Model II estimated the erosivity index for average annual, yearly, and half-month temporal scales reasonably well, with the symmetric mean absolute percentage error MAPEsym ranging from 10.8% to 32.1%. Model II predicted slightly better than Model I. However, the prediction efficiency for the daily erosivity index was limited, with the symmetric mean absolute percentage error being 68.0% (Model I) and 65.7% (Model II) and Nash–Sutcliffe model efficiency being 0.55 (Model I) and 0.57 (Model II). Model III, which used the combination of daily rainfall amount and daily maximum 60-min rainfall, improved predictions significantly, and produced a Nash–Sutcliffe model efficiency for daily erosivity index prediction of 0.93. Thus daily rainfall data was generally sufficient for estimating annual average, yearly, and half-monthly time scales, while sub-daily data was needed when estimating daily erosivity values.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PDD发布了新的文献求助10
刚刚
1秒前
gtx完成签到 ,获得积分10
1秒前
1秒前
Hello应助qwerty采纳,获得10
1秒前
笑相完成签到,获得积分10
1秒前
2秒前
Coco完成签到 ,获得积分10
2秒前
2秒前
3秒前
mengdewen发布了新的文献求助30
3秒前
OU发布了新的文献求助10
3秒前
4秒前
科研通AI6应助伞下铭采纳,获得10
4秒前
科研通AI6应助伞下铭采纳,获得10
4秒前
CipherSage应助干净的友卉采纳,获得10
4秒前
dada完成签到 ,获得积分10
5秒前
5秒前
科研小卡拉米完成签到,获得积分10
6秒前
SciGPT应助CHINA_C13采纳,获得10
6秒前
orixero应助CHINA_C13采纳,获得10
6秒前
CodeCraft应助CHINA_C13采纳,获得150
6秒前
科研通AI6应助CHINA_C13采纳,获得150
6秒前
科研通AI6应助CHINA_C13采纳,获得10
6秒前
科研通AI6应助CHINA_C13采纳,获得150
6秒前
小羊先生完成签到 ,获得积分10
6秒前
云游归尘发布了新的文献求助10
7秒前
小童发布了新的文献求助10
7秒前
饱满以松完成签到 ,获得积分10
7秒前
7秒前
8秒前
平平发布了新的文献求助10
8秒前
凶狠的储发布了新的文献求助10
8秒前
冰菱完成签到,获得积分10
8秒前
Owen应助碎碎采纳,获得10
8秒前
warithy发布了新的文献求助10
9秒前
Ethanyoyo0917完成签到,获得积分10
9秒前
Ava应助优雅的老姆采纳,获得10
9秒前
liekkas发布了新的文献求助10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667047
求助须知:如何正确求助?哪些是违规求助? 4883873
关于积分的说明 15118527
捐赠科研通 4825937
什么是DOI,文献DOI怎么找? 2583643
邀请新用户注册赠送积分活动 1537807
关于科研通互助平台的介绍 1496002