Models for estimating daily rainfall erosivity in China

环境科学 水文学(农业) 气候学 气象学 地质学 地理 岩土工程
作者
Yun Xie,Shuiqing Yin,Baoyuan Liu,M. A. Nearing,Ying Zhao
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:535: 547-558 被引量:180
标识
DOI:10.1016/j.jhydrol.2016.02.020
摘要

Summary The rainfall erosivity factor (R) represents the multiplication of rainfall energy and maximum 30 min intensity by event (EI30) and year. This rainfall erosivity index is widely used for empirical soil loss prediction. Its calculation, however, requires high temporal resolution rainfall data that are not readily available in many parts of the world. The purpose of this study was to parameterize models suitable for estimating erosivity from daily rainfall data, which are more widely available. One-minute resolution rainfall data recorded in sixteen stations over the eastern water erosion impacted regions of China were analyzed. The R-factor ranged from 781.9 to 8258.5 MJ mm ha−1 h−1 y−1. A total of 5942 erosive events from one-minute resolution rainfall data of ten stations were used to parameterize three models, and 4949 erosive events from the other six stations were used for validation. A threshold of daily rainfall between days classified as erosive and non-erosive was suggested to be 9.7 mm based on these data. Two of the models (I and II) used power law functions that required only daily rainfall totals. Model I used different model coefficients in the cool season (Oct.–Apr.) and warm season (May–Sept.), and Model II was fitted with a sinusoidal curve of seasonal variation. Both Model I and Model II estimated the erosivity index for average annual, yearly, and half-month temporal scales reasonably well, with the symmetric mean absolute percentage error MAPEsym ranging from 10.8% to 32.1%. Model II predicted slightly better than Model I. However, the prediction efficiency for the daily erosivity index was limited, with the symmetric mean absolute percentage error being 68.0% (Model I) and 65.7% (Model II) and Nash–Sutcliffe model efficiency being 0.55 (Model I) and 0.57 (Model II). Model III, which used the combination of daily rainfall amount and daily maximum 60-min rainfall, improved predictions significantly, and produced a Nash–Sutcliffe model efficiency for daily erosivity index prediction of 0.93. Thus daily rainfall data was generally sufficient for estimating annual average, yearly, and half-monthly time scales, while sub-daily data was needed when estimating daily erosivity values.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kkPi发布了新的文献求助10
2秒前
无语的大碗完成签到,获得积分10
3秒前
英吉利25发布了新的文献求助50
4秒前
4秒前
私欲宝宝发布了新的文献求助10
5秒前
傲娇时光完成签到,获得积分10
5秒前
Akim应助kkPi采纳,获得10
6秒前
紫丁香完成签到 ,获得积分10
7秒前
四叶草哦完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
机智乐蕊完成签到,获得积分10
9秒前
10秒前
故事细腻完成签到 ,获得积分10
10秒前
Zzy0816完成签到,获得积分10
10秒前
棉花完成签到 ,获得积分10
10秒前
无极微光应助学术牛马采纳,获得20
10秒前
11秒前
nanjiab发布了新的文献求助10
11秒前
11秒前
山雀完成签到,获得积分10
13秒前
任炳成完成签到,获得积分20
14秒前
Rowan发布了新的文献求助10
14秒前
kkkkpoa完成签到,获得积分10
15秒前
善良水池完成签到,获得积分10
15秒前
16秒前
Lucy发布了新的文献求助10
16秒前
16秒前
完美世界应助bbbjddd采纳,获得10
16秒前
忧伤的映阳完成签到 ,获得积分10
17秒前
zbaby发布了新的文献求助10
17秒前
17秒前
17秒前
Ava应助笑点低的静竹采纳,获得10
18秒前
Orange应助坚强的访蕊采纳,获得10
19秒前
受伤毛豆完成签到,获得积分10
19秒前
酷波er应助私欲宝宝采纳,获得10
19秒前
后知后觉发布了新的文献求助10
20秒前
21秒前
DD发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600957
求助须知:如何正确求助?哪些是违规求助? 4686530
关于积分的说明 14844417
捐赠科研通 4679086
什么是DOI,文献DOI怎么找? 2539100
邀请新用户注册赠送积分活动 1505992
关于科研通互助平台的介绍 1471252