吸引子
分岔图
数学
李雅普诺夫指数
霍普夫分叉
分叉
统计物理学
应用数学
Rössler吸引子
简单(哲学)
转化(遗传学)
鞍结分岔
数学分析
非线性系统
计算机科学
混乱的
物理
人工智能
量子力学
化学
生物化学
哲学
认识论
基因
作者
Zhouchao Wei,Wei Zhang,Zhen Wang,Minghui Yao
标识
DOI:10.1142/s0218127415500285
摘要
In this paper, an extended Rikitake system is studied. Several issues, such as Hopf bifurcation, coexistence of stable equilibria and hidden attractor, and dynamics analysis at infinity are investigated either analytically or numerically. Especially, by a simple linear transformation, the wide range of hidden attractors is noticed, and the Lyapunov exponents diagram is given. The obtained results show that the unstable periodic solution generated by Hopf bifurcation leads to the hidden attractor. The existence of hidden attractors that may render the system's behavior unpredictable not only depends on the value of system parameters but also on the value of initial conditions. The phenomena are important and potentially problematic in engineering applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI