机器人
机械加工
补偿(心理学)
航空航天
控制工程
汽车工业
模块化设计
执行机构
计算机科学
模块化(生物学)
控制器(灌溉)
软件
工程类
人工智能
机械工程
航空航天工程
精神分析
心理学
程序设计语言
农学
操作系统
遗传学
生物
作者
Christian W. Lehmann,Marcello Pellicciari,Manuel Drust,J.W. Gunnink
出处
期刊:Communications in computer and information science
日期:2013-01-01
卷期号:: 27-36
被引量:25
标识
DOI:10.1007/978-3-642-39223-8_3
摘要
Machining using industrial robots is currently limited to applications with low geometrical accuracies and soft materials due to weaknesses of the robot structure, insufficient controller performance and the lack of suitable software tools. This paper proposes a modular approach to overcome these obstacles, applied both during program generation (offline) and execution (online). Offline predictive machining errors compensation is achieved by means of an innovative programming system, based on kinematic and dynamic robot models. Realtime adaptive machining error compensation is also provided by sensing the real robot positions with an innovative tracking system and corrective feedback to both the robot and an additional high dynamic compensation mechanism on piezo-actuator basis. Due to the modularity of the approach, an individual setup can be compiled for each actual use-case. Final experimental validation of the components is currently ongoing in multiple robot cells, covering several application areas as aerospace, automotive or mould construction.
科研通智能强力驱动
Strongly Powered by AbleSci AI