Enzymatic hydroxylation of an unactivated methylene C–H bond guided by molecular dynamics simulations

化学 选择性 基质(水族馆) 双环分子 反应性(心理学) 羟基化 立体选择性 组合化学 生物催化 立体化学 亚甲基 分子动力学 计算化学 有机化学 反应机理 医学 海洋学 替代医学 病理 地质学 催化作用
作者
Alison R. H. Narayan,Gonzalo Jiménez‐Osés,Peng Liu,Solymar Negretti,Wanxiang Zhao,Michael M. Gilbert,Raghunath O. Ramabhadran,Yun Yang,Lawrence R. Furan,Zhe Li,Larissa M. Podust,John Montgomery,K. N. Houk,David H. Sherman
出处
期刊:Nature Chemistry [Springer Nature]
卷期号:7 (8): 653-660 被引量:104
标识
DOI:10.1038/nchem.2285
摘要

The hallmark of enzymes from secondary metabolic pathways is the pairing of powerful reactivity with exquisite site selectivity. The application of these biocatalytic tools in organic synthesis, however, remains under-utilized due to limitations in substrate scope and scalability. Here, we report how the reactivity of a monooxygenase (PikC) from the pikromycin pathway is modified through computationally guided protein and substrate engineering, and applied to the oxidation of unactivated methylene C–H bonds. Molecular dynamics and quantum mechanical calculations were used to develop a predictive model for substrate scope, site selectivity and stereoselectivity of PikC-mediated C–H oxidation. A suite of menthol derivatives was screened computationally and evaluated through in vitro reactions, where each substrate adhered to the predicted models for selectivity and conversion to product. This platform was also expanded beyond menthol-based substrates to the selective hydroxylation of a variety of substrate cores ranging from cyclic to fused bicyclic and bridged bicyclic compounds. The reactivity of a monooxygenase (P450 PikC) has been modified through protein and substrate engineering, and applied to the oxidation of unactivated methylene C–H bonds. The protein engineering was guided by using molecular dynamics and quantum mechanical calculations to develop a predictive model for substrate scope, site selectivity and stereoselectivity of the C–H hydroxylation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吃点水果保护局完成签到 ,获得积分10
刚刚
gs完成签到,获得积分10
刚刚
Xyyy完成签到,获得积分10
刚刚
1秒前
白石杏完成签到,获得积分10
3秒前
ll200207完成签到,获得积分10
4秒前
凶狠的乐巧完成签到,获得积分10
4秒前
Lin发布了新的文献求助10
5秒前
三七发布了新的文献求助10
5秒前
5秒前
鸣隐发布了新的文献求助10
5秒前
6秒前
6秒前
软豆皮完成签到,获得积分10
6秒前
lan完成签到,获得积分10
7秒前
英姑应助松松果采纳,获得10
7秒前
8秒前
8秒前
8秒前
8秒前
chillin发布了新的文献求助10
9秒前
zhui发布了新的文献求助10
9秒前
薪炭林完成签到,获得积分10
10秒前
Rrr发布了新的文献求助10
10秒前
10秒前
SCISSH完成签到 ,获得积分10
10秒前
FEI发布了新的文献求助10
11秒前
科研通AI5应助奔奔采纳,获得10
12秒前
星辰大海应助八八采纳,获得20
12秒前
gaga发布了新的文献求助10
12秒前
木子加y发布了新的文献求助10
12秒前
大大泡泡完成签到,获得积分10
13秒前
852应助zhui采纳,获得10
14秒前
芒果发布了新的文献求助10
14秒前
15秒前
前百年253完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794