Bayesian Convolutional Neural Networks for Seismic Facies Classification

岩石物理学 后验概率 人工神经网络 模式识别(心理学) 贝叶斯概率 卷积神经网络 地质学 计算机科学 人工智能 地震反演 反向传播 算法 数学 古生物学 几何学 岩土工程 构造盆地 方位角 多孔性
作者
Runhai Feng,Niels Balling,Darío Graña,Jesper Dramsch,Thomas Mejer Hansen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (10): 8933-8940 被引量:51
标识
DOI:10.1109/tgrs.2020.3049012
摘要

The seismic response of geological reservoirs is a function of the elastic properties of porous rocks, which depends on rock types, petrophysical features, and geological environments. Such rock characteristics are generally classified into geological facies. We propose to use the convolutional neural networks in a Bayesian framework to predict facies based on seismic data and quantify the uncertainty in the classification. A variational approach is adopted to approximate the posterior distribution of neural parameters that is mathematically intractable. The network is trained on labeled examples. The mean and the standard deviation of the distribution of neural parameters are randomly drawn from predefined Gaussian functions for the initialization, and are updated by minimizing the negative evidence lower bound. The facies classification is applied to seismic sections not included in the training data set. We draw multiple random samples from the trained variational posterior distribution to simulate an ensemble predictor and classify the most probable seismic facies. We implement the proposed network in the open-source library of TensorFlow Probability, for its convenience and flexibility. The applications show that the internal regions of the seismic sections are generally classified with higher confidence than their boundaries, as measured by the predictive entropy that is calculated based on a multiclass probability across the possible facies. A plain neural network is also applied for comparison, by assigning fixed values to the neural parameters using a classical backpropagation technique. The comparison shows consistent results; however, the proposed approach is able to assess the uncertainty in the predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
roser完成签到 ,获得积分10
1秒前
欢喜白亦完成签到 ,获得积分10
2秒前
Chang完成签到,获得积分10
6秒前
善学以致用应助th采纳,获得10
8秒前
鸣笛应助肖宇婕采纳,获得30
8秒前
fls221完成签到,获得积分10
9秒前
刀切面完成签到 ,获得积分10
10秒前
Lost发布了新的文献求助10
13秒前
欢喜白亦关注了科研通微信公众号
13秒前
桐桐应助kento采纳,获得10
13秒前
15秒前
等于几都行完成签到 ,获得积分10
15秒前
15秒前
lihang发布了新的文献求助10
18秒前
潇潇麻麻完成签到,获得积分10
18秒前
相对完成签到,获得积分10
19秒前
20秒前
JamesPei应助棋士采纳,获得10
20秒前
星辰大海应助chr采纳,获得10
21秒前
22秒前
丘比特应助高挑的梦芝采纳,获得10
22秒前
起飞上天完成签到,获得积分10
23秒前
李爱国应助Lost采纳,获得10
25秒前
lihang完成签到,获得积分10
27秒前
Re完成签到,获得积分10
28秒前
xxxx发布了新的文献求助10
29秒前
29秒前
29秒前
郭睿发布了新的文献求助10
31秒前
31秒前
刻苦冬菱完成签到,获得积分10
31秒前
32秒前
QING发布了新的文献求助10
33秒前
烂漫炎彬发布了新的文献求助10
33秒前
yzhwzh给yzhwzh的求助进行了留言
33秒前
相对发布了新的文献求助50
36秒前
Ma完成签到,获得积分10
37秒前
40秒前
quhayley应助Flanker采纳,获得20
41秒前
危机的安容完成签到,获得积分10
42秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951053
求助须知:如何正确求助?哪些是违规求助? 3496470
关于积分的说明 11082221
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784016
邀请新用户注册赠送积分活动 868165
科研通“疑难数据库(出版商)”最低求助积分说明 801030