已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Data-driven physics-informed constitutive metamodeling of complex fluids: A multifidelity neural network (MFNN) framework

流变学 人工神经网络 实验数据 计算机科学 人工智能 复杂流体 元建模 航程(航空) 本构方程 材料科学 机器学习 算法 机械 物理 热力学 数学 统计 有限元法 复合材料 程序设计语言
作者
Mohammadamin Mahmoudabadbozchelou,Marco Caggioni,Setareh Shahsavari,William H. Hartt,George Em Karniadakis,Safa Jamali
出处
期刊:Journal of Rheology [Society of Rheology]
卷期号:65 (2): 179-198 被引量:70
标识
DOI:10.1122/8.0000138
摘要

In this work, we introduce a comprehensive machine-learning algorithm, namely, a multifidelity neural network (MFNN) architecture for data-driven constitutive metamodeling of complex fluids. The physics-based neural networks developed here are informed by the underlying rheological constitutive models through the synthetic generation of low-fidelity model-based data points. The performance of these rheologically informed algorithms is thoroughly investigated and compared against classical deep neural networks (DNNs). The MFNNs are found to recover the experimentally observed rheology of a multicomponent complex fluid consisting of several different colloidal particles, wormlike micelles, and other oil and aromatic particles. Moreover, the data-driven model is capable of successfully predicting the steady state shear viscosity of this fluid under a wide range of applied shear rates based on its constituting components. Building upon the demonstrated framework, we present the rheological predictions of a series of multicomponent complex fluids made by DNN and MFNN. We show that by incorporating the appropriate physical intuition into the neural network, the MFNN algorithms capture the role of experiment temperature, the salt concentration added to the mixture, as well as aging within and outside the range of training data parameters. This is made possible by leveraging an abundance of synthetic low-fidelity data that adhere to specific rheological models. In contrast, a purely data-driven DNN is consistently found to predict erroneous rheological behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Chris发布了新的文献求助10
4秒前
汤汤完成签到 ,获得积分10
5秒前
科研小白爱科研完成签到,获得积分10
9秒前
10秒前
12秒前
12秒前
13秒前
liu发布了新的文献求助10
16秒前
16秒前
17秒前
James发布了新的文献求助10
18秒前
20秒前
领导范儿应助阿文采纳,获得10
20秒前
陶醉健柏完成签到,获得积分10
22秒前
居蓝完成签到 ,获得积分10
22秒前
23秒前
24秒前
陶醉健柏发布了新的文献求助10
26秒前
Grayson发布了新的文献求助10
26秒前
汉堡包应助芷兰丁香采纳,获得10
27秒前
zhuiyu完成签到,获得积分10
27秒前
cc发布了新的文献求助10
28秒前
春夏爱科研完成签到,获得积分10
29秒前
坦率的丹烟完成签到 ,获得积分10
29秒前
土豆你个西红柿完成签到 ,获得积分10
29秒前
性感的小蚂蚁完成签到,获得积分10
30秒前
August完成签到,获得积分10
36秒前
温暖海露发布了新的文献求助10
38秒前
Grayson完成签到,获得积分10
38秒前
cc关闭了cc文献求助
39秒前
張医铄完成签到,获得积分10
41秒前
啥文献找不到完成签到 ,获得积分10
48秒前
机智的雪糕完成签到,获得积分10
51秒前
52秒前
丘比特应助口香糖探长采纳,获得30
58秒前
59秒前
cc只会嘻嘻完成签到 ,获得积分10
1分钟前
CipherSage应助haha采纳,获得30
1分钟前
呀呀呀发布了新的文献求助30
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555627
求助须知:如何正确求助?哪些是违规求助? 3131330
关于积分的说明 9390563
捐赠科研通 2830968
什么是DOI,文献DOI怎么找? 1556243
邀请新用户注册赠送积分活动 726475
科研通“疑难数据库(出版商)”最低求助积分说明 715803