Demand Response for Industrial Micro-Grid Considering Photovoltaic Power Uncertainty and Battery Operational Cost

需求响应 概率逻辑 数学优化 光伏系统 调度(生产过程) 计算机科学 整数规划 网格 可靠性工程 时间范围 智能电网 工程类 算法 电气工程 人工智能 数学 几何学
作者
Chao Huang,Hongcai Zhang,Yonghua Song,Long Wang,Tanveer Ahmad,Xiong Luo
出处
期刊:IEEE Transactions on Smart Grid [Institute of Electrical and Electronics Engineers]
卷期号:12 (4): 3043-3055 被引量:43
标识
DOI:10.1109/tsg.2021.3052515
摘要

An intelligent demand response (DR) program is developed for multi-energy industrial micro-grid consisting of manufacturing facilities, photovoltaic (PV) panels, and battery energy storage system (BESS). The proposed DR program tackles the practical challenges of components in the micro-grid including industrial process represented by a discrete manufacturing production model, uncertainty of PV generation, and operational cost of the BESS. The proposed DR program optimizes day-ahead production scheduling for manufacturing facilities and operation regime for the BESS in response to time of use electricity price and probabilistic forecasting of PV power. To capture the uncertainty of PV power, a data-driven PV power probabilistic forecasting model is developed and a copula-based approach is deployed for the sampling of temporally correlated scenarios of PV power over the scheduling horizon from probabilistic forecasts. The multi-energy management optimization problem is formulated as a scenario-based stochastic nonconvex mixed integer nonlinear programming (MINLP). A hybrid optimization method integrating the evolutionary algorithm and the branch-and-bound algorithm for mixed integer liner programming is proposed to solve the nonconvex MINLP. Simulation studies illustrate that the proposed DR program efficiently reduces the operational cost for manufacturing production and releases the stress of the main grid by making full use of flexibility of all the components in the micro-grid.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘振坤完成签到,获得积分10
1秒前
2秒前
2秒前
凶狠的半山完成签到,获得积分10
3秒前
JRG完成签到,获得积分20
3秒前
瞬间完成签到,获得积分10
4秒前
4秒前
6秒前
决明子完成签到 ,获得积分10
6秒前
希望天下0贩的0应助柚子采纳,获得10
6秒前
量子星尘发布了新的文献求助10
8秒前
10秒前
9℃完成签到 ,获得积分10
11秒前
单纯黑米完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助30
12秒前
勤恳洙发布了新的文献求助10
13秒前
祝笑柳完成签到,获得积分10
14秒前
秋qiu完成签到,获得积分10
14秒前
NINI完成签到 ,获得积分10
15秒前
liuzengzhang666完成签到,获得积分10
17秒前
18秒前
小巧的牛排完成签到 ,获得积分10
18秒前
所所应助柚子采纳,获得10
19秒前
19秒前
刘濮源发布了新的文献求助10
19秒前
19秒前
充电宝应助123采纳,获得10
19秒前
lljiaa应助科研通管家采纳,获得10
21秒前
Orange应助科研通管家采纳,获得10
21秒前
ylt应助科研通管家采纳,获得10
21秒前
CodeCraft应助科研通管家采纳,获得30
21秒前
21秒前
21秒前
Maricey应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
所所应助科研通管家采纳,获得10
22秒前
lljiaa应助科研通管家采纳,获得10
22秒前
22秒前
Orange应助科研通管家采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742197
求助须知:如何正确求助?哪些是违规求助? 5407018
关于积分的说明 15344388
捐赠科研通 4883635
什么是DOI,文献DOI怎么找? 2625185
邀请新用户注册赠送积分活动 1574043
关于科研通互助平台的介绍 1530978